Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33883 by math khazana by abdo last updated on 26/Apr/18

find a simple form of f(x)=∫_0 ^(π/2) ln(1+xsin^2 t)dt  with ∣x∣<1.

findasimpleformoff(x)=0π2ln(1+xsin2t)dt withx∣<1.

Commented bymath khazana by abdo last updated on 01/May/18

we have f^′ (x)= ∫_0 ^(π/2)      ((sin^2 t)/(1+xsin^2 t))dt  and for x≠0  f^′ (x) =(1/x) ∫_0 ^(π/2)  ((1+xsin^2 t−1)/(1+xsin^2 t))dt  = (π/(2x))  −(1/x) ∫_0 ^(π/2)      (dt/(1+x sin^2 t))  but   ∫_0 ^(π/2)     (dt/(1+x sin^2 t)) = ∫_0 ^(π/2)     (dt/(1+x ((1−cos(2t))/2)))  = ∫_0 ^(π/2)      ((2dt)/(2 +x −x cos(2t))) =_(2t=u)  ∫_0 ^π        (du/(2+x −x cosu))  also ch tan((u/2))=t give  ∫_0 ^(π/2)      (dt/(1+x sin^2 t)) = ∫_0 ^(+∞)       (1/(2+x−x((1−t^2 )/(1+t^2 ))))  ((2dt)/(1+t^2 ))  = ∫_0 ^∞     ((2dt)/((2+x)(1+t^2 ) −x(1−t^2 )))  =∫_0 ^∞     ((2dt)/(2+x  +(2+x)t^2   −x  +xt^2 ))  = ∫_0 ^∞        ((2dt)/(2  + 2(1+x)t^2 )) = ∫_0 ^∞       (dt/(1+(1+x)t^2 ))  =_((√(1+x))t=u)   ∫_0 ^∞      (1/(1+u^2 )) (du/(√(1+x))) = (π/(2(√(1+x))))  ⇒  f^′ (x) = (π/(2x)) −(1/x) (π/(2(√(1+x)))) = (π/(2x))( 1−(1/(√(1+x)))) ⇒  f(x)=(π/2)ln∣x∣ −(π/2)∫_. ^x     (dt/(t(√(1+t))))  +λ  ∫    (dt/(t(√(1+t)))) =_((√(1+t))=u) ∫    ((2udu)/((u^2 −1)u))  = ∫     ((2du)/((u+1)(u−1))) =∫ ((1/(u−1)) −(1/(u+1)))du  =ln∣((u−1)/(u+1))∣ =ln((((√(1+x))−1)/((√(1+x)) +1))) ⇒  f(x) = (π/2)ln∣x∣ −(π/2)ln((((√(1+x))−1)/((√(1+x)) +1))) +λ  λ =lim_(x→1) (f(x) −(π/2)ln∣x∣ +(π/2)ln((((√(1+x))−1)/((√(1+x))+1))))  =f(1) +(π/2)ln((((√2)−1)/((√2)+1)))  =∫_0 ^(π/2)  ln(1+sin^2 t)dt +(π/2)ln((((√2)−1)/((√2)+1))) .

wehavef(x)=0π2sin2t1+xsin2tdtandforx0 f(x)=1x0π21+xsin2t11+xsin2tdt =π2x1x0π2dt1+xsin2tbut 0π2dt1+xsin2t=0π2dt1+x1cos(2t)2 =0π22dt2+xxcos(2t)=2t=u0πdu2+xxcosu alsochtan(u2)=tgive 0π2dt1+xsin2t=0+12+xx1t21+t22dt1+t2 =02dt(2+x)(1+t2)x(1t2) =02dt2+x+(2+x)t2x+xt2 =02dt2+2(1+x)t2=0dt1+(1+x)t2 =1+xt=u011+u2du1+x=π21+x f(x)=π2x1xπ21+x=π2x(111+x) f(x)=π2lnxπ2.xdtt1+t+λ dtt1+t=1+t=u2udu(u21)u =2du(u+1)(u1)=(1u11u+1)du =lnu1u+1=ln(1+x11+x+1) f(x)=π2lnxπ2ln(1+x11+x+1)+λ λ=limx1(f(x)π2lnx+π2ln(1+x11+x+1)) =f(1)+π2ln(212+1) =0π2ln(1+sin2t)dt+π2ln(212+1).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com