All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33883 by math khazana by abdo last updated on 26/Apr/18
findasimpleformoff(x)=∫0π2ln(1+xsin2t)dt with∣x∣<1.
Commented bymath khazana by abdo last updated on 01/May/18
wehavef′(x)=∫0π2sin2t1+xsin2tdtandforx≠0 f′(x)=1x∫0π21+xsin2t−11+xsin2tdt =π2x−1x∫0π2dt1+xsin2tbut ∫0π2dt1+xsin2t=∫0π2dt1+x1−cos(2t)2 =∫0π22dt2+x−xcos(2t)=2t=u∫0πdu2+x−xcosu alsochtan(u2)=tgive ∫0π2dt1+xsin2t=∫0+∞12+x−x1−t21+t22dt1+t2 =∫0∞2dt(2+x)(1+t2)−x(1−t2) =∫0∞2dt2+x+(2+x)t2−x+xt2 =∫0∞2dt2+2(1+x)t2=∫0∞dt1+(1+x)t2 =1+xt=u∫0∞11+u2du1+x=π21+x⇒ f′(x)=π2x−1xπ21+x=π2x(1−11+x)⇒ f(x)=π2ln∣x∣−π2∫.xdtt1+t+λ ∫dtt1+t=1+t=u∫2udu(u2−1)u =∫2du(u+1)(u−1)=∫(1u−1−1u+1)du =ln∣u−1u+1∣=ln(1+x−11+x+1)⇒ f(x)=π2ln∣x∣−π2ln(1+x−11+x+1)+λ λ=limx→1(f(x)−π2ln∣x∣+π2ln(1+x−11+x+1)) =f(1)+π2ln(2−12+1) =∫0π2ln(1+sin2t)dt+π2ln(2−12+1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com