Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33894 by math khazana by abdo last updated on 26/Apr/18

1)let f  R→C  2π periodic even  /f(x)=x   ∀ x∈[0,π[  developp f at fourier serie  2) calculate  Σ_(p=0) ^∞   (1/((2p+1)^2 )) .

1)letfRC2πperiodiceven/f(x)=xx[0,π[developpfatfourierserie2)calculatep=01(2p+1)2.

Commented by abdo imad last updated on 28/Apr/18

f is even so f(x)=(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)with  a_n = (2/T) ∫_([T]) f(x)cos(nx)dx=(2/(2π)) ∫_(−π) ^π  x cos(nx)dx  =(2/π) ∫_0 ^π  xcos(nx)dx⇒ (π/2)a_n =∫_0 ^π  xcos(nx)dx let integrate  by parts u^ =x and v^′ =cos(nx)⇒  (π/2)a_n =((x/n)sin(nx)]_0 ^π  −∫_0 ^π  (1/n)sin(nx)dx  =−(1/n)∫_0 ^π sin(nx)=(1/n^2 )[cos(nx)]_0 ^π =(1/n^2 )((−1)^n  −1) ⇒  a_n =(2/(πn^2 ))((−1)^n −1)⇒a_(2n)  =0 and a_(2n+1) =((−4)/(π(2n+1)^2 ))  (π/2)a_0 =∫_0 ^π xdx=(π^2 /2) ⇒a_0  =π ⇒  f(x) = (π/2) −(4/π) Σ_(n=0) ^∞    ((cos(2n+1)x)/((2n+1)^2 ))  (d)  2) let take x=0 in (d) we get  0=(π/2) −(4/π) Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒(4/π) Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(π/2) ⇒  Σ_(n=0) ^∞    (1/((2n+1)^2 )) =(π^2 /8) .

fisevensof(x)=a02+n=1ancos(nx)withan=2T[T]f(x)cos(nx)dx=22πππxcos(nx)dx=2π0πxcos(nx)dxπ2an=0πxcos(nx)dxletintegratebypartsu=xandv=cos(nx)π2an=(xnsin(nx)]0π0π1nsin(nx)dx=1n0πsin(nx)=1n2[cos(nx)]0π=1n2((1)n1)an=2πn2((1)n1)a2n=0anda2n+1=4π(2n+1)2π2a0=0πxdx=π22a0=πf(x)=π24πn=0cos(2n+1)x(2n+1)2(d)2)lettakex=0in(d)weget0=π24πn=01(2n+1)24πn=01(2n+1)2=π2n=01(2n+1)2=π28.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com