Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33915 by prof Abdo imad last updated on 27/Apr/18

let Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t)  dt with x>0  1) find Γ^((n)) (x) with n∈ N^★   2) calculate Γ(n +(3/2)) for n integr.

letΓ(x)=0tx1etdtwithx>0 1)findΓ(n)(x)withnN 2)calculateΓ(n+32)fornintegr.

Commented byprof Abdo imad last updated on 29/Apr/18

1) we have Γ(x)= ∫_0 ^∞  e^((x−1)lnt)  e^(−t) dt ⇒  Γ^′ (x) = ∫_0 ^∞  ln(t)e^((x−1)ln(t)) e^(−t)  dt  Γ^(′′) (x) = ∫_0 ^∞ (lnt)^2  e^((x−1)ln(t))  e^(−t) dt and its easy   to prove by recurrence that  Γ^((n)) (x) = ∫_0 ^∞ (lnt)^n  t^(x−1)  e^(−t)  dt  ∀ n∈ N  (Γ^((0)) =Γ)

1)wehaveΓ(x)=0e(x1)lntetdt Γ(x)=0ln(t)e(x1)ln(t)etdt Γ(x)=0(lnt)2e(x1)ln(t)etdtanditseasy toprovebyrecurrencethat Γ(n)(x)=0(lnt)ntx1etdtnN(Γ(0)=Γ)

Commented byprof Abdo imad last updated on 29/Apr/18

we knew that Γ(x+1)=xΓ(x) ⇒  Γ(n+(3/2)) =Γ( (n+(1/2)) +1)=(n+(1/2))Γ(n+(1/2))  =(n+(1/2))Γ(n−(1/2)+1)=(n+(1/2))(n−(1/2))Γ(n−(1/2))  =(n+(1/2))(n−(1/2))(n−(3/2))Γ(n −(3/2))  =(n+(1/2))(n−(1/2))(n−(3/2))....(n−((2n−1)/2))Γ(n−((2n−1)/2))  =(n+(1/2))(n−(1/2))(n −(3/2))...(1/2)Γ((1/2))   but   Γ((1/2))=∫_0 ^∞  t^(−(1/2))  e^(−t) dt = ∫_0 ^∞    (e^(−t) /(√t))dt  =_((√t)=x)  ∫_0 ^∞    (e^(−x^2 ) /x) 2xdc =2 ∫_0 ^∞   e^(−x^2 ) dx= 2((√π)/2) =(√π)  Γ(n+(3/2)) =(√π)(n+(1/2))(n−(1/2))(n−(3/2))....(3/2)(1/2)  and this quantity can be given by factoriels.

weknewthatΓ(x+1)=xΓ(x) Γ(n+32)=Γ((n+12)+1)=(n+12)Γ(n+12) =(n+12)Γ(n12+1)=(n+12)(n12)Γ(n12) =(n+12)(n12)(n32)Γ(n32) =(n+12)(n12)(n32)....(n2n12)Γ(n2n12) =(n+12)(n12)(n32)...12Γ(12) but Γ(12)=0t12etdt=0ettdt =t=x0ex2x2xdc=20ex2dx=2π2=π Γ(n+32)=π(n+12)(n12)(n32)....3212 andthisquantitycanbegivenbyfactoriels.

Commented byprof Abdo imad last updated on 29/Apr/18

Γ(n+(3/2)) =((√π)/2) Π_(k=1) ^n  ((2k+1)/2)  =((√π)/2) (1/2^n ) (3.5.7.....(2n+1))  =((√π)/2^(n+1) ) (2.3.4.5.6.....(2n)(2n+1))(2.4.6....(2n))^(−1)   =((√π)/2^(n+1) ) (((2n+1)!)/(2^n n!)) = ((√π)/2^(2n+1) ) (((2n+1)!)/(n!)) .

Γ(n+32)=π2k=1n2k+12 =π212n(3.5.7.....(2n+1)) =π2n+1(2.3.4.5.6.....(2n)(2n+1))(2.4.6....(2n))1 =π2n+1(2n+1)!2nn!=π22n+1(2n+1)!n!.

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Apr/18

2.⌈(n+3/2)     =⌈(n+1+1/2)     =(n+1/2)⌈(n+1/2)      =(n+1/2)⌈(n−1/2 +1)      =(n+1/2)(n−1/2)⌈(n−1/2)       =(n+1/2)(n−1/2)(n−3/2)⌈(n−3/2)       =(n+1/2)(n−1/2)(n−3/2)(n−5/2)⌈(n−5/2  the expression can not be in factorial form  since extreme right factor can not be 1

2.(n+3/2) =(n+1+1/2) =(n+1/2)(n+1/2) =(n+1/2)(n1/2+1) =(n+1/2)(n1/2)(n1/2) =(n+1/2)(n1/2)(n3/2)(n3/2) =(n+1/2)(n1/2)(n3/2)(n5/2)(n5/2 theexpressioncannotbeinfactorialform sinceextremerightfactorcannotbe1

Answered by MJS last updated on 27/Apr/18

1.     Γ^((n)) (x)=∫_0 ^∞ t^(x−1) ln(t)^n e^(−t) dt  2.     ((√π)/2)×Π_(i=1) ^n ((2i+1)/2)

1.Γ(n)(x)=0tx1ln(t)netdt 2.π2×ni=12i+12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com