Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 33969 by mondodotto@gmail.com last updated on 28/Apr/18

if tanA+tanB=P and AtanB=q  express the value of cos(2A+3B) in terms of p and q.

iftanA+tanB=PandAtanB=qexpressthevalueofcos(2A+3B)intermsofpandq.

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Apr/18

let tanA=a  tanB=b   cos(2A+2B+B)  =cos(2A+2B).cosB−sin(2A+2B).sinB  ={cos2A.cos2B−sin2A.sin2B}cosB−{sin2A.  cos2B+cos2A.sin2B}.sinB  put cos2A= (1−a^2 /1+a^2 ) sin2A=2a/1+a^2   simplyfy if prlblem comment pls..

lettanA=atanB=bcos(2A+2B+B)=cos(2A+2B).cosBsin(2A+2B).sinB={cos2A.cos2Bsin2A.sin2B}cosB{sin2A.cos2B+cos2A.sin2B}.sinBputcos2A=(1a2/1+a2)sin2A=2a/1+a2simplyfyifprlblemcommentpls..

Commented by mondodotto@gmail.com last updated on 29/Apr/18

i dont undstnd

idontundstnd

Commented by tanmay.chaudhury50@gmail.com last updated on 29/Apr/18

ok i am solving in details and shall upload the image

okiamsolvingindetailsandshalluploadtheimage

Answered by tanmay.chaudhury50@gmail.com last updated on 29/Apr/18

let tanA=a,tanB=b so a+b=p ,ab=q  (a−b)^2 =(a+b)^2  −4ab  a−b=(√(p^2 −4q))  and  a+b=p  solving a=p+(√(p^2  −4q ))  b=p−(√(p^2 −4q))    cos(2A+3B)  =cos2A.cos3B−sin2A.sin3B  =(((1−tan^2 A)/(1+tan^2 A)))cosB(3−4cos^2 B)−(((2tanA)/(1+tan^2 A))).sinB.  (4sin^2 B−3)  now replace tanA by a  tanB by b  cosB=(1/((√(1+b^2 ))  ))  sinB=((tanB)/(secB))=(b/((√(1+b^2 ))  ))   ((1−a^2 )/(1+a^2 )).(1/(√(1+b^2 )))(3−(4/(1+b^2 )))−(((2a)/(1+a^2 )))(b/(√(1+b^2 ))).(((4b^2 )/(1+b^2 ))−3  put a=p+(√(p^2   −4q )) and b=p−(√(p^2  4q))  simplify

lettanA=a,tanB=bsoa+b=p,ab=q(ab)2=(a+b)24abab=p24qanda+b=psolvinga=p+p24qb=pp24qcos(2A+3B)=cos2A.cos3Bsin2A.sin3B=(1tan2A1+tan2A)cosB(34cos2B)(2tanA1+tan2A).sinB.(4sin2B3)nowreplacetanAbyatanBbybcosB=11+b2sinB=tanBsecB=b1+b21a21+a2.11+b2(341+b2)(2a1+a2)b1+b2.(4b21+b23puta=p+p24qandb=pp24qsimplify

Terms of Service

Privacy Policy

Contact: info@tinkutara.com