All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33979 by abdo imad last updated on 28/Apr/18
wegivefort>0∫0∞sinxxe−txdx=π2−arctant usethisresulttofindthevalueof∫0∞(1−e−x)sinxx2dx.
Commented byabdo mathsup 649 cc last updated on 03/May/18
weknowthat∫0∞sinxxe−txdx=π2−arctant⇒ ∫01(π2−arctant)dt=∫01(∫0∞sinxxe−txdx) =∫0∞(∫01e−txdt)sinxxdx(byfubini) =∫0∞([−1xe−tx]t=0t=1)sinxxdx =∫0∞1x2(1−e−x)sinxdxbut ∫01(π2−arctant)dt=π2−∫01arctantdt byparts∫01arctantdt=[tarctant]01−∫10t1+t2dt =π4−12[ln(1+t2)]01=π4−12ln(2)⇒ ∫0∞(1−e−x)sinxx2dx=π4+12ln(2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com