Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33979 by abdo imad last updated on 28/Apr/18

we give for t>0 ∫_0 ^∞   ((sinx)/x) e^(−tx) dx =(π/2) −arctant  use this result to find the value of ∫_0 ^∞   (((1−e^(−x) )sinx)/x^2 )dx .

$${we}\:{give}\:{for}\:{t}>\mathrm{0}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}}\:{e}^{−{tx}} {dx}\:=\frac{\pi}{\mathrm{2}}\:−{arctant} \\ $$ $${use}\:{this}\:{result}\:{to}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{1}−{e}^{−{x}} \right){sinx}}{{x}^{\mathrm{2}} }{dx}\:. \\ $$

Commented byabdo mathsup 649 cc last updated on 03/May/18

we know that  ∫_0 ^∞    ((sinx)/x) e^(−tx)  dx=(π/2) −arctant ⇒  ∫_0 ^1  ((π/2) −arctant)dt = ∫_0 ^1  ( ∫_0 ^∞  ((sinx)/x) e^(−tx) dx)  =∫_0 ^∞   (∫_0 ^1   e^(−tx) dt) ((sinx)/x)dx ( by fubini)  =∫_0 ^∞  ([−(1/x) e^(−tx) ]_(t=0) ^(t=1) )((sinx)/x)dx  =∫_0 ^∞ (1/x^2 )(1−e^(−x) ) sinx dx but  ∫_0 ^1 ( (π/2) −arctant)dt =(π/2) −∫_0 ^1   arctan t dt  by parts  ∫_0 ^1   arctan t dt = [tarctant]_0 ^1  −∫_0 ^1  (t/(1+t^2 ))dt  =(π/4) −(1/2)[ln(1+t^2 )]_0 ^1   = (π/4) −(1/2)ln(2) ⇒  ∫_0 ^∞    (((1−e^(−x) )sinx)/x^2 ) dx = (π/4) +(1/2)ln(2) .

$${we}\:{know}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sinx}}{{x}}\:{e}^{−{tx}} \:{dx}=\frac{\pi}{\mathrm{2}}\:−{arctant}\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\frac{\pi}{\mathrm{2}}\:−{arctant}\right){dt}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{x}}\:{e}^{−{tx}} {dx}\right) \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:\:\left(\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−{tx}} {dt}\right)\:\frac{{sinx}}{{x}}{dx}\:\left(\:{by}\:{fubini}\right) \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:\left(\left[−\frac{\mathrm{1}}{{x}}\:{e}^{−{tx}} \right]_{{t}=\mathrm{0}} ^{{t}=\mathrm{1}} \right)\frac{{sinx}}{{x}}{dx} \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left(\mathrm{1}−{e}^{−{x}} \right)\:{sinx}\:{dx}\:{but} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\:\frac{\pi}{\mathrm{2}}\:−{arctant}\right){dt}\:=\frac{\pi}{\mathrm{2}}\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\:{t}\:{dt} \\ $$ $${by}\:{parts}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\:{t}\:{dt}\:=\:\left[{tarctant}\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\overset{\mathrm{1}} {\int}_{\mathrm{0}} \:\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$ $$=\frac{\pi}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:=\:\frac{\pi}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}−{e}^{−{x}} \right){sinx}}{{x}^{\mathrm{2}} }\:{dx}\:=\:\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com