Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33986 by abdo imad last updated on 28/Apr/18

find ∫_(−∞) ^(+∞)   ((cos(tx))/((1+x^2 )^2 )) dx with t≥0

find+cos(tx)(1+x2)2dxwitht0

Commented by math khazana by abdo last updated on 01/May/18

let introduce the complex function  ϕ(z)= (e^(itz) /((1+z^2 )^2 ))  we have  I =∫_(−∞) ^(+∞)   ((cos(tx))/((1+x^2 )^2 ))dx= Re( ∫_(−∞) ^(+∞)   (e^(itx) /((1+x^2 )^2 ))dx)  ϕ(z)=  (e^(itz) /((z−i)^2 (z+i)^2 )) so the poles of ϕ are  i and−i( doubles)  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)   (1/((2−1)!)) ((z−i)^2 f(z))^′   =lim_(z→i)  (  (e^(itz) /((z+i)^2 )))^′   =lim_(z→i)    ((ite^(itz)  (z+i)^2  −2(z+i)e^(itz) )/((z+i)^4 ))  =lim_(z→i)    (((z+i)it e^(itz)  −2 e^(itz) )/((z+i)^3 ))  =(((2i)it e^(−t)    −2 e^(−t) )/((2i)^3 )) = ((−4 e^(−t) )/(−8i)) = (1/(2i)) e^(−t)   ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (e^(−t) /(2i)) =π e^(−t)   ⇒ I= π e^(−t)

letintroducethecomplexfunctionφ(z)=eitz(1+z2)2wehaveI=+cos(tx)(1+x2)2dx=Re(+eitx(1+x2)2dx)φ(z)=eitz(zi)2(z+i)2sothepolesofφareiandi(doubles)+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!((zi)2f(z))=limzi(eitz(z+i)2)=limziiteitz(z+i)22(z+i)eitz(z+i)4=limzi(z+i)iteitz2eitz(z+i)3=(2i)itet2et(2i)3=4et8i=12iet+φ(z)dz=2iπet2i=πetI=πet

Terms of Service

Privacy Policy

Contact: info@tinkutara.com