All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33986 by abdo imad last updated on 28/Apr/18
find∫−∞+∞cos(tx)(1+x2)2dxwitht⩾0
Commented by math khazana by abdo last updated on 01/May/18
letintroducethecomplexfunctionφ(z)=eitz(1+z2)2wehaveI=∫−∞+∞cos(tx)(1+x2)2dx=Re(∫−∞+∞eitx(1+x2)2dx)φ(z)=eitz(z−i)2(z+i)2sothepolesofφareiand−i(doubles)∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!((z−i)2f(z))′=limz→i(eitz(z+i)2)′=limz→iiteitz(z+i)2−2(z+i)eitz(z+i)4=limz→i(z+i)iteitz−2eitz(z+i)3=(2i)ite−t−2e−t(2i)3=−4e−t−8i=12ie−t∫−∞+∞φ(z)dz=2iπe−t2i=πe−t⇒I=πe−t
Terms of Service
Privacy Policy
Contact: info@tinkutara.com