Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33990 by abdo imad last updated on 28/Apr/18

let give I  =∫_0 ^1 ln(x)ln(1+x)dx   give I at form of serie .

$${let}\:{give}\:{I}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right){dx}\: \\ $$$${give}\:{I}\:{at}\:{form}\:{of}\:{serie}\:. \\ $$

Commented by abdo imad last updated on 01/May/18

we have ln^′ (1+x)= (1/(1+x)) =Σ_(n=0) ^∞  (−1)^n x^n    with ∣x∣<1  ⇒ln(1+x) =Σ_(n=0) ^∞  (((−1)^n )/(n+1))x^(n+1)  +λ =Σ_(n=1) ^∞   (((−1)^(n−1) )/n)x^n  +λ  λ=0 ⇒ ln(1+x)=Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n   I =∫_0 ^1  (Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n )ln(x)dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^1  x^n ln(x)dx   let integrate by parts  A_n = ∫_0 ^1  x^n  ln(x)dx =[(1/(n+1))x^(n+1) ln(x)]_0 ^1  −∫_0 ^1  (1/(n+1)) x^n dx  =−(1/((n+1)^2 )) ⇒ I =−Σ_(n=1) ^∞    (((−1)^(n−1) )/n) (1/((n+1)^2 ))  I = Σ_(n=1) ^∞      (((−1)^n )/(n(n+1)^2 )) .

$${we}\:{have}\:{ln}^{'} \left(\mathrm{1}+{x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\Rightarrow{ln}\left(\mathrm{1}+{x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \:+\lambda\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}{x}^{{n}} \:+\lambda \\ $$$$\lambda=\mathrm{0}\:\Rightarrow\:{ln}\left(\mathrm{1}+{x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{x}^{{n}} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}{x}^{{n}} \right){ln}\left({x}\right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} {ln}\left({x}\right){dx}\:\:\:{let}\:{integrate}\:{by}\:{parts} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{ln}\left({x}\right){dx}\:=\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} {ln}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:{x}^{{n}} {dx} \\ $$$$=−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\:{I}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${I}\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com