Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 34019 by prof Abdo imad last updated on 29/Apr/18

n integr decompose imsidr R[x] the fraction  F(x) =   (1/((x^2  −1)^n ))

nintegrdecomposeimsidrR[x]thefractionF(x)=1(x21)n

Commented by abdo mathsup 649 cc last updated on 06/May/18

F(x)= (1/((x−1)^n (x+1)^n ))  cha7gement x−1 =t give  F(x)=g(t)=  (1/(t^n (t+2)^n ))  let find  D_(n−1) (0) for  (1/((t+2)^n ))  h(x)= (1/((t+2)^n )) = Σ_(k=0) ^(n−1)    ((h^((k)) (0))/(k!)) x^k   +(x^n /(n!)) ξ(x)  h^((k)) (x)={(t+2)^(−n) }^((k))   h^′ (x)= −n(t+2)^(−(n+1))   h^((2)) (x) =(−1)^2  n(n+1) (t+2)^(−(n+2))   h^((k)) (x)= (−1)^k  n(n+1).....(n+k−1)(t+2)^(−(n+k))   h^((k)) (0) =(−1)^k n(n+1).....(n+k−1) 2^(−(n+k))   ⇒ h(x) = Σ_(k=0) ^(n−1)       (((−1)^k  n(n+1)....(n+k−1))/(k! 2^(n+k) )) x^k   + (x^n /(n!)) ξ(x)

F(x)=1(x1)n(x+1)ncha7gementx1=tgiveF(x)=g(t)=1tn(t+2)nletfindDn1(0)for1(t+2)nh(x)=1(t+2)n=k=0n1h(k)(0)k!xk+xnn!ξ(x)h(k)(x)={(t+2)n}(k)h(x)=n(t+2)(n+1)h(2)(x)=(1)2n(n+1)(t+2)(n+2)h(k)(x)=(1)kn(n+1).....(n+k1)(t+2)(n+k)h(k)(0)=(1)kn(n+1).....(n+k1)2(n+k)h(x)=k=0n1(1)kn(n+1)....(n+k1)k!2n+kxk+xnn!ξ(x)

Commented by abdo mathsup 649 cc last updated on 07/May/18

h(t) = (1/((t+2)^n )) ⇒  g(t) = (1/t^n ) Σ_(k=0) ^(n−1)    (((−1)^k  n(n+1)...(n+k−1))/(k! 2^(n+k) )) t^k   + (1/(n!))ξ(t)   = Σ_(k=0) ^(n−1)    (((−1)^k  n(n+1).....(n+k−1))/(k! 2^(n+k)   t^(n−k) ))  changement of indice n−k =p give  g(t) = Σ_(p=1) ^n  (((−1)^(n−p)  n(n+1)....(n +n−p −1))/((n−p! 2^(n +n−p)  t^p ))  = Σ_(p=1) ^n    (((−1)^(n−p)   n(n+1)....(2n−p−1))/((n−p)! 2^(2n−p)   t^p ))  from another side  g(t) = Σ_(p=1) ^n   (λ_p /t^p )   + Σ_(k=1) ^n  (a_k /((t+2)^k )) ⇒  λ_p   = (((−1)^(n−p) n(n+1)....((n−p−1))/((n−p)! 2^(2n−p) ))  be continued...

h(t)=1(t+2)ng(t)=1tnk=0n1(1)kn(n+1)...(n+k1)k!2n+ktk+1n!ξ(t)=k=0n1(1)kn(n+1).....(n+k1)k!2n+ktnkchangementofindicenk=pgiveg(t)=p=1n(1)npn(n+1)....(n+np1)(np!2n+nptp=p=1n(1)npn(n+1)....(2np1)(np)!22nptpfromanothersideg(t)=p=1nλptp+k=1nak(t+2)kλp=(1)npn(n+1)....((np1)(np)!22npbecontinued...

Commented by abdo mathsup 649 cc last updated on 07/May/18

λ_(p )   = (((−1)^(n−p)  n(n+1).....(2n−p−1))/((n−p)! 2^(2n−p) ))

λp=(1)npn(n+1).....(2np1)(np)!22np

Commented by prof Abdo imad last updated on 07/May/18

we have F(x)= (1/((x−1)^n (x+1)^n )) now we use  the changement x+1 =t ⇒  F(x)=g(t) = (1/((t−2)^n  t^n )) let put  h(t) =(1/((t−2)^n )) = Σ_(k=0) ^(n−1)  ((h^((k)) (0))/(k!)) t^k   + (t^n /(n!)) ξ(t)  h^((k)) (x) =(−1)^k n(n+1)....(n+k−1) (t−2)^(−(n+k))   h^((k)) (0) =(−1)^k  n(n+1).....(n+k−1)(−2)^(−(n+k))   ⇒h(t) =Σ_(k=0) ^(n−1)    (((−1)^k  n(n+1)....(n+k−1))/(k!(−2)^(n+k) )) t^k   +(t^n /(n!))ξ(t)⇒g(t)= Σ_(k=0) ^(n−1)  (((−1)^k  n(n+1)...(n+k−1))/(k!(−2)^(n+k)  t^(n−k) ))  and we folow tbe same road to find a_k  ....

wehaveF(x)=1(x1)n(x+1)nnowweusethechangementx+1=tF(x)=g(t)=1(t2)ntnletputh(t)=1(t2)n=k=0n1h(k)(0)k!tk+tnn!ξ(t)h(k)(x)=(1)kn(n+1)....(n+k1)(t2)(n+k)h(k)(0)=(1)kn(n+1).....(n+k1)(2)(n+k)h(t)=k=0n1(1)kn(n+1)....(n+k1)k!(2)n+ktk+tnn!ξ(t)g(t)=k=0n1(1)kn(n+1)...(n+k1)k!(2)n+ktnkandwefolowtbesameroadtofindak....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com