Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 34020 by prof Abdo imad last updated on 29/Apr/18

let p(x)=cos(2n arccos(x))  with x∈[−1,1]  find the roots of p(x) and factorize  p(x)

$${let}\:{p}\left({x}\right)={cos}\left(\mathrm{2}{n}\:{arccos}\left({x}\right)\right)\:\:{with}\:{x}\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$$${find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:{and}\:{factorize}\:\:{p}\left({x}\right) \\ $$

Commented by math khazana by abdo last updated on 02/May/18

let put arccosx=t ⇔ x=cost  p(x)=0 ⇔ cos(2nt)=0 ⇔ 2nt =(π/2) +kπ   k∈ Z  ⇔ t_k  = (π/(4n)) +((kπ)/(2n))   k ∈Z    but card{t_k }<+∞ we can  prove that k∈[0,2n−1]] so the roots of p(x)are  x_k =cos(t_k ) =cos((π/(4n)) +((kπ)/(2n))) and  p(x)=λ Π_(k=0) ^(2n−1)  (x −cos((π/(4n)) +((kπ)/(2n)))) .

$${let}\:{put}\:{arccosx}={t}\:\Leftrightarrow\:{x}={cost} \\ $$$${p}\left({x}\right)=\mathrm{0}\:\Leftrightarrow\:{cos}\left(\mathrm{2}{nt}\right)=\mathrm{0}\:\Leftrightarrow\:\mathrm{2}{nt}\:=\frac{\pi}{\mathrm{2}}\:+{k}\pi\:\:\:{k}\in\:{Z} \\ $$$$\Leftrightarrow\:{t}_{{k}} \:=\:\frac{\pi}{\mathrm{4}{n}}\:+\frac{{k}\pi}{\mathrm{2}{n}}\:\:\:{k}\:\in{Z}\:\:\:\:{but}\:{card}\left\{{t}_{{k}} \right\}<+\infty\:{we}\:{can} \\ $$$$\left.{prove}\:{that}\:{k}\in\left[\mathrm{0},\mathrm{2}{n}−\mathrm{1}\right]\right]\:{so}\:{the}\:{roots}\:{of}\:{p}\left({x}\right){are} \\ $$$${x}_{{k}} ={cos}\left({t}_{{k}} \right)\:={cos}\left(\frac{\pi}{\mathrm{4}{n}}\:+\frac{{k}\pi}{\mathrm{2}{n}}\right)\:{and} \\ $$$${p}\left({x}\right)=\lambda\:\prod_{{k}=\mathrm{0}} ^{\mathrm{2}{n}−\mathrm{1}} \:\left({x}\:−{cos}\left(\frac{\pi}{\mathrm{4}{n}}\:+\frac{{k}\pi}{\mathrm{2}{n}}\right)\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com