Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 34117 by tanmay.chaudhury50@gmail.com last updated on 30/Apr/18

Commented by abdo imad last updated on 01/May/18

let put f(x)=((sinθ)/(x^2  −2xcosθ +1))  poles of f(x)?  x^2 −2xcosθ +1=0   Δ^′ =cos^2 θ −1 =−sin^2 θ =(isinθ)^2   x_1 =cosθ +isinθ =e^(iθ)   and x_2 =e^(−iθ)  ⇒  f(x) = ((sinθ)/((x−e^(iθ) )(x−e^(−iθ) ))) =sinθ( (1/(x−e^(iθ) )) −(1/(x −e^(−iθ) ))).(1/(2isinθ))  =(1/(2i))(  ((−1)/(e^(iθ)  −x)) +(1/(e^(−iθ)  −x)))  =(1/(2i))( ((−e^(−iθ) )/(1−xe^(−iθ) ))  + (e^(iθ) /(1−x e^(iθ) )))  =(1/(2i))(  e^(iθ) Σ_(n=0) ^∞  x^n  e^(inθ)   −e^(−iθ)  Σ_(n=0) ^∞  x^n  e^(−inθ) )  =(1/(2i))(  Σ_(n=0) ^∞  e^(i(n+1)θ)  x^n   −Σ_(n=0) ^∞  e^(−i(n+1)θ) x^n )  =(1/(2i))Σ_(n=0) ^∞  ( e^(i(n+1)θ)  −e^(−i(n+1)θ) )x^n   =Σ_(n=0) ^∞  sin((n+1)θ) x^n   =sinθ +sin(2θ)x^2   +sin(3θ)x^3  +....

letputf(x)=sinθx22xcosθ+1polesoff(x)?x22xcosθ+1=0Δ=cos2θ1=sin2θ=(isinθ)2x1=cosθ+isinθ=eiθandx2=eiθf(x)=sinθ(xeiθ)(xeiθ)=sinθ(1xeiθ1xeiθ).12isinθ=12i(1eiθx+1eiθx)=12i(eiθ1xeiθ+eiθ1xeiθ)=12i(eiθn=0xneinθeiθn=0xneinθ)=12i(n=0ei(n+1)θxnn=0ei(n+1)θxn)=12in=0(ei(n+1)θei(n+1)θ)xn=n=0sin((n+1)θ)xn=sinθ+sin(2θ)x2+sin(3θ)x3+....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com