Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34129 by abdo imad last updated on 01/May/18

find the value of  ∫_0 ^1 ln(x)ln(1+x)dx .

findthevalueof01ln(x)ln(1+x)dx.

Commented by math khazana by abdo last updated on 02/May/18

we have proved that   ∫_0 ^1  ln(x)ln(1+x)dx = Σ_(n=1) ^∞  (((−1)^n )/(n(n+1)^2 ))  let put S_n = Σ_(k=1) ^n   (((−1)^k )/(k(k+1)^2 )) and let decompose  F(x)= (1/(x(x+1)^2 )) = (a/x) +(b/(x+1)) +(c/((x+1)^2 ))  a=lim_(x→0)  xF(x) = 1  c=lim_(x→−1) (x+1)^2  F(x)= −1 ⇒  F(x)= (1/x) +(b/(x+1)) −(1/((x+1)^2 ))  F(1)= (1/4) = 1 +(b/2) −(1/4) ⇒ 1=4 +2b −1= 3+2b  ⇒2b=−2⇒ b=−1 ⇒ F(x)= (1/x) −(1/(x+1)) −(1/((x+1)^2 ))  S_n = Σ_(k=1) ^n  (((−1)^k )/k) −Σ_(k=1) ^n  (((−1)^k )/(k+1)) −Σ_(k=1) ^n  (((−1)^k )/((k+1)^2 ))  Σ_(k=1) ^n   (((−1)^k )/k) →Σ_(k=1) ^∞   (((−1)^k )/k) =−ln(2)  Σ_(k=1) ^n    (((−1)^k )/(k+1)) =Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k) −1 →Σ_(k=1) ^∞ (((−1)^(k−1) )/k)−1  =ln(2) −1  Σ_(k=1) ^n   (((−1)^k )/((k+1)^2 )) = Σ_(k=1) ^(n+1)    (((−1)^(k−1) )/k^2 ) −1  → Σ_(k=1) ^∞    (((−1)^(k−1) )/k^2 ) = −Σ_(n=1) ^∞    (1/((2n)^2 )) +Σ_(n=0) ^∞   (1/((2n+1)^2 ))  =(π^2 /8) −(1/4) (π^2 /6) = ((3π^2  −π^2 )/(24)) = (π^2 /(12))  S_n   = −ln(2)−ln(2)+1 −(π^2 /(12)) +1  S_n  = 2 −2ln(2)  −(π^2 /(12)) .

wehaveprovedthat01ln(x)ln(1+x)dx=n=1(1)nn(n+1)2letputSn=k=1n(1)kk(k+1)2andletdecomposeF(x)=1x(x+1)2=ax+bx+1+c(x+1)2a=limx0xF(x)=1c=limx1(x+1)2F(x)=1F(x)=1x+bx+11(x+1)2F(1)=14=1+b2141=4+2b1=3+2b2b=2b=1F(x)=1x1x+11(x+1)2Sn=k=1n(1)kkk=1n(1)kk+1k=1n(1)k(k+1)2k=1n(1)kkk=1(1)kk=ln(2)k=1n(1)kk+1=k=1n+1(1)k1k1k=1(1)k1k1=ln(2)1k=1n(1)k(k+1)2=k=1n+1(1)k1k21k=1(1)k1k2=n=11(2n)2+n=01(2n+1)2=π2814π26=3π2π224=π212Sn=ln(2)ln(2)+1π212+1Sn=22ln(2)π212.

Commented by abdo mathsup 649 cc last updated on 02/May/18

S_∞ = 2 −2ln(2) −(π^2 /(12)) .

S=22ln(2)π212.

Answered by tanmay.chaudhury50@gmail.com last updated on 01/May/18

Commented by tanmay.chaudhury50@gmail.com last updated on 01/May/18

Commented by tanmay.chaudhury50@gmail.com last updated on 01/May/18

from graph it is clear that  area of the curve is greater than zero   but less than 0.5   so 0.5 >∫_0 ^1 lnx.ln(1+x)>0

fromgraphitisclearthatareaofthecurveisgreaterthanzerobutlessthan0.5so0.5>10lnx.ln(1+x)>0

Commented by math khazana by abdo last updated on 02/May/18

sir tanmay the value of ∫_0 ^1 ln(x)ln(1+x)dx must   be negative because ln(x)≤0 for x∈]0,1].

sirtanmaythevalueof01ln(x)ln(1+x)dxmustbenegativebecauseln(x)0forx]0,1].

Commented by tanmay.chaudhury50@gmail.com last updated on 02/May/18

yes true but see the graph..area under   the curve is negative area so   ∫_0 ^1 lnx.ln(1+x)dx is the area under the curve  but negative area   so 0.5>∣∫_0 ^1 lnx.ln(1+x)dx∣>0

yestruebutseethegraph..areaunderthecurveisnegativeareaso10lnx.ln(1+x)dxistheareaunderthecurvebutnegativeareaso0.5>∣10lnx.ln(1+x)dx∣>0

Commented by tanmay.chaudhury50@gmail.com last updated on 02/May/18

correction pls  area under the curve is negetive area so      0.5>∣∫_0 ^1 lnx.ln(1+x)dx∣>0

correctionplsareaunderthecurveisnegetiveareaso0.5>∣10lnx.ln(1+x)dx∣>0

Answered by MJS last updated on 02/May/18

∫f′g=fg−∫fg′  f′=ln(x+1) ⇒ f=(x+1)(ln(x+1)−1)  g=lnx ⇒ g′=(1/x)  fg=(x+1)(ln(x+1)−1)lnx  ∫fg′=∫((x+1)/x)(ln(x+1)−1)dx=  =∫ ((ln(x+1))/x)dx+∫ln(x+1)dx−∫(1/x)dx−∫1dx=  =∫ ((ln(x+1))/x)dx+(x+1)(ln(x+1)−1)−lnx−x=  =∫ ((ln(x+1))/x)dx+(x+1)ln(x+1)−lnx−2x    ∫_0 ^1 lnx ln(x+1)dx=  =[(x+1)(lnx−1)ln(x+1)−x(lnx−2)]_0 ^1 −∫_0 ^1  ((ln(x+1))/x)dx=            lim_(x→0^+ ) xlnx=lim_(x→0^+ ) ((lnx)/(1/x))= [l′Hopital] =            =lim_(x→0^+ ) ((1/x)/(−(1/x^2 )))=lim_(x→0^+ ) −x=0 ⇒            ⇒lim_(x→0^+ ) (x+1)(lnx−1)ln(x+1)−x(lnx−2)=0  =2−2ln2−∫_0 ^1  ((ln(x+1))/x)dx    ∫ ((ln(x+1))/x)dx=            u=−x → dx=−du  =−∫−((ln(1−u))/u)du=−Li_2 (u)=−Li_2 (−x)    polylogarithm Li_s (x)=Σ_(n=1) ^∞ (x^n /n^s )  −(Li_2 (−1)−Li_2 (0))=−Σ_(n=1) ^∞ (((−1)^n )/n^2 )+Σ_(n=1) ^∞ (0^n /n^2 )=  =−Σ_(n=1) ^∞ (((−1)^n )/n^2 )=(π^2 /(12))    ∫_0 ^1 lnx ln(x+1)dx=2−2ln2−(π^2 /(12))≈−.208761

fg=fgfgf=ln(x+1)f=(x+1)(ln(x+1)1)g=lnxg=1xfg=(x+1)(ln(x+1)1)lnxfg=x+1x(ln(x+1)1)dx==ln(x+1)xdx+ln(x+1)dx1xdx1dx==ln(x+1)xdx+(x+1)(ln(x+1)1)lnxx==ln(x+1)xdx+(x+1)ln(x+1)lnx2x10lnxln(x+1)dx==[(x+1)(lnx1)ln(x+1)x(lnx2)]0110ln(x+1)xdx=limx0+xlnx=limx0+lnx1x=[lHopital]==limx0+1x1x2=limx0+x=0limx0+(x+1)(lnx1)ln(x+1)x(lnx2)=0=22ln210ln(x+1)xdxln(x+1)xdx=u=xdx=du=ln(1u)udu=Li2(u)=Li2(x)polylogarithmLis(x)=n=1xnns(Li2(1)Li2(0))=n=1(1)nn2+n=10nn2==n=1(1)nn2=π21210lnxln(x+1)dx=22ln2π212.208761

Terms of Service

Privacy Policy

Contact: info@tinkutara.com