All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 34159 by candre last updated on 01/May/18
letS=1+2+...+2018computeS(mod2)+S(mod8)+S(mod2018)
Commented by Rasheed.Sindhi last updated on 05/May/18
S=(1+3+5+...+2017)+(2+4+...+2018)Sumofevennumbersisevennumber∴2+4+...+2018evennumberSumofoddnumbers,whennumberofnumbersisodd,isodd.∴1+3+5+...+2017isoddnumber∴S=odd+even=oddnumber∴S(mod2)=1−−−−−S(mod8)?−−−−−−S=(1+2+3+...+2017)+2018=(1+2017)+(2+2016)+...+1009+2018=2018+2018+...+1009+2018=(multipleof2018)+1009∴S(mod2018)=1009Continue
Answered by Rasheed.Sindhi last updated on 05/May/18
S=1+2+...+2018;anAP:a=1,d=1,n=2018S=n2[2a+(n−1)d]S=20182[2(1)+(2018−1)(1)]=1009[2018+1]=2018×1009+1009∴S(mod2018)=1009.........A−−−−−−−−−−−S=1009×2019=(1008+1)(2018+1)=1008×2018+1008+2018+1=1008×2019+2018+1=2(504×2019+1009)+1∴S(mod2)=1................B−−−−−−S=1009×2019=(1009)(2000+16+3)=2000×1009+16×1009+3×1009=2000×1009+16×1009+3000+27=2000×1009+16×1009+3000+24+32000,16,3000&24aredivisibleby8[Completethousandsarealwaysdivisibleby8]∴S(mod8)=3...............CFromA,B&CS(mod2)+S(mod8)+S(mod2018)=1+3+1009=1013
Commented by Rasheed.Sindhi last updated on 09/May/18
Mr.candrepleaseconfirmtheanswer.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com