Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 34160 by candre last updated on 01/May/18

prove that  lim_(x→0^+ ) ln x∙ln (1+x)=lim_(x→1) ln x∙ln (1+x)

$${prove}\:{that} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}ln}\:{x}\centerdot\mathrm{ln}\:\left(\mathrm{1}+{x}\right)=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}ln}\:{x}\centerdot\mathrm{ln}\:\left(\mathrm{1}+{x}\right) \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 01/May/18

Commented by tanmay.chaudhury50@gmail.com last updated on 01/May/18

see the graph LHS limit is zero also RHS limit  also zero

$${see}\:{the}\:{graph}\:{LHS}\:{limit}\:{is}\:{zero}\:{also}\:{RHS}\:{limit} \\ $$$${also}\:{zero} \\ $$

Commented by abdo mathsup 649 cc last updated on 02/May/18

we have lim_(x→0^+ )   ln(x)ln(1+x)  =lim_(x→0^+ )   (xlnx)((ln(1+x))/x)=0 because lim_(x→0^+ )  xln(x)=0  lim_(x→0^+ )   ((ln(1+x))/x) = 1  from another side  lim_(x→1) ln(x).ln(1+x) =ln(1)ln(2)=0 because  the function ln(x) is continue at 1 and 2.

$${we}\:{have}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:{ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right) \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\left({xlnx}\right)\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}=\mathrm{0}\:{because}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:{xln}\left({x}\right)=\mathrm{0} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}\:=\:\mathrm{1}\:\:{from}\:{another}\:{side} \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} {ln}\left({x}\right).{ln}\left(\mathrm{1}+{x}\right)\:={ln}\left(\mathrm{1}\right){ln}\left(\mathrm{2}\right)=\mathrm{0}\:{because} \\ $$$${the}\:{function}\:{ln}\left({x}\right)\:{is}\:{continue}\:{at}\:\mathrm{1}\:{and}\:\mathrm{2}. \\ $$$$ \\ $$

Answered by MJS last updated on 02/May/18

right side:  ln1=0  0ln2=0  left side:  e^(lnx ln(x+1)) =(x+1)^(lnx)   lim_(x→0^+ ) (x+1)^(lnx) =1^(−∞) =1 ⇒  ⇒ lim_(x→0^+ ) lnx ln(x+1)=0

$$\mathrm{right}\:\mathrm{side}: \\ $$$$\mathrm{ln1}=\mathrm{0} \\ $$$$\mathrm{0ln2}=\mathrm{0} \\ $$$$\mathrm{left}\:\mathrm{side}: \\ $$$$\mathrm{e}^{\mathrm{ln}{x}\:\mathrm{ln}\left({x}+\mathrm{1}\right)} =\left({x}+\mathrm{1}\right)^{\mathrm{ln}{x}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left({x}+\mathrm{1}\right)^{\mathrm{ln}{x}} =\mathrm{1}^{−\infty} =\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}ln}{x}\:\mathrm{ln}\left({x}+\mathrm{1}\right)=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com