All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 34186 by Joel578 last updated on 02/May/18
Letx1=0,x2=1andxn=12(xn−1+xn−2)Showthatxn=2n−1+(−1)n3.2n−2
Commented by abdo mathsup 649 cc last updated on 02/May/18
⇔2xn=xn−1+xn−2⇔2xn+2=xn+1+xn⇔2xn+2−xn+1−xn=0thecsrscteristicequationis2x2−x−1=0Δ=1−4(2)(−1)=9>0x1=1+34=1,x2=1−34=−12therootsaresimples⇒xn=α1n+β(−12)n=α+β(−12)nx1=0⇒α−β2=0⇒β=2αx2=1⇒α+β4=1⇒4α+β=4⇒4α+2α=4⇒6α=4⇒α=23andβ=43⇒xn=23+43(−12)n=23+4(−1)n3.2n=13(2n+1+4.(−1)n2n)=43(2n−1+(−1)n2n)=2n−1+(−1)n3.2n−2.
Answered by candre last updated on 02/May/18
x1=21−1+(−1)13⋅21−2=1−13/2=0x2=22−1+(−1)23⋅22−2=2+13=1xn−1=2n−2+(−1)n−13⋅2n−3xn−2=2n−3+(−1)n−23⋅2n−4xn−1+xn−22=12(2n−2+(−1)n−13⋅2n−3+2n−3+(−1)n−23⋅2n−4)=12n+1⋅3(2n−2−(−1)n2−3+2n−3+(−1)n2−4)=12n+1⋅3[23(2n−2−(−1)n)+24(2n−3+(−1)n)]=232n−2−23(−1)n+242n−3+24(−1)n2n+1⋅3=2n+2+(24−23)(−1)n2n+1⋅3=23(2n−1+(2−1)(−1)n)2n+1⋅3=2n−1+(−1)n2n−2⋅3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com