Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 34186 by Joel578 last updated on 02/May/18

Let x_1  = 0, x_2  = 1 and x_n  = (1/2)(x_(n−1)  + x_(n−2) )  Show that   x_n  = ((2^(n−1)  + (−1)^n )/(3 . 2^(n−2) ))

Letx1=0,x2=1andxn=12(xn1+xn2)Showthatxn=2n1+(1)n3.2n2

Commented by abdo mathsup 649 cc last updated on 02/May/18

⇔ 2x_n = x_(n−1)  +x_(n−2)  ⇔ 2x_(n+2) = x_(n+1)  +x_n   ⇔ 2x_(n+2)  −x_(n+1)  −x_n =0 the csrscteristic equation  is  2x^2  −x−1 =0  Δ = 1 −4(2)(−1) = 9 >0  x_1 =((1+3)/4) =1  ,  x_2 =((1−3)/4) =−(1/2) the roots are simples  ⇒ x_n = α 1^n  +β (−(1/2))^n  =α  +β(−(1/2))^n   x_1 =0 ⇒ α −(β/2)=0 ⇒β=2α  x_2 = 1 ⇒ α +(β/4) =1 ⇒4α  +β =4 ⇒4α +2α =4 ⇒  6α=4⇒ α =(2/3)  and  β =(4/3) ⇒  x_n = (2/3) +(4/3)(−(1/2))^n  = (2/3) + ((4(−1)^n )/(3 .2^n ))  =(1/3)(  ((2^(n+1)   +4 .(−1)^n )/2^n ))=(4/3)( ((2^(n−1)  +(−1)^n )/2^n ))  = ((2^(n−1)  +(−1)^n )/(3.2^(n−2) )) .

2xn=xn1+xn22xn+2=xn+1+xn2xn+2xn+1xn=0thecsrscteristicequationis2x2x1=0Δ=14(2)(1)=9>0x1=1+34=1,x2=134=12therootsaresimplesxn=α1n+β(12)n=α+β(12)nx1=0αβ2=0β=2αx2=1α+β4=14α+β=44α+2α=46α=4α=23andβ=43xn=23+43(12)n=23+4(1)n3.2n=13(2n+1+4.(1)n2n)=43(2n1+(1)n2n)=2n1+(1)n3.2n2.

Answered by candre last updated on 02/May/18

x_1 =((2^(1−1) +(−1)^1 )/(3∙2^(1−2) ))=((1−1)/(3/2))=0  x_2 =((2^(2−1) +(−1)^2 )/(3∙2^(2−2) ))=((2+1)/3)=1  x_(n−1) =((2^(n−2) +(−1)^(n−1) )/(3∙2^(n−3) ))  x_(n−2) =((2^(n−3) +(−1)^(n−2) )/(3∙2^(n−4) ))  ((x_(n−1) +x_(n−2) )/2)=(1/2)(((2^(n−2) +(−1)^(n−1) )/(3∙2^(n−3) ))+((2^(n−3) +(−1)^(n−2) )/(3∙2^(n−4) )))  =(1/(2^(n+1) ∙3))(((2^(n−2) −(−1)^n )/2^(−3) )+((2^(n−3) +(−1)^n )/2^(−4) ))  =(1/(2^(n+1) ∙3))[2^3 (2^(n−2) −(−1)^n )+2^4 (2^(n−3) +(−1)^n )]  =((2^3 2^(n−2) −2^3 (−1)^n +2^4 2^(n−3) +2^4 (−1)^n )/(2^(n+1) ∙3))  =((2^(n+2) +(2^4 −2^3 )(−1)^n )/(2^(n+1) ∙3))  =((2^3 (2^(n−1) +(2−1)(−1)^n ))/(2^(n+1) ∙3))  =((2^(n−1) +(−1)^n )/(2^(n−2) ∙3))

x1=211+(1)13212=113/2=0x2=221+(1)23222=2+13=1xn1=2n2+(1)n132n3xn2=2n3+(1)n232n4xn1+xn22=12(2n2+(1)n132n3+2n3+(1)n232n4)=12n+13(2n2(1)n23+2n3+(1)n24)=12n+13[23(2n2(1)n)+24(2n3+(1)n)]=232n223(1)n+242n3+24(1)n2n+13=2n+2+(2423)(1)n2n+13=23(2n1+(21)(1)n)2n+13=2n1+(1)n2n23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com