Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 34217 by abdo imad last updated on 02/May/18

calculate lim_(n→+∞) n^3  Σ_(k=1) ^n    (1/(n^4  +k^2 n^2  +k^4 )) .

calculatelimn+n3k=1n1n4+k2n2+k4.

Commented by math khazana by abdo last updated on 04/May/18

let put S_n  = n^3  Σ_(k=1) ^n     (1/(n^4  +k^2 n^2  +k^4 ))  S_n = (1/n) Σ_(k=1) ^(n )      (1/(1+(k^2 /n^2 ) + (k^4 /n^4 )))  so S_n  is a Rieman sum  and lim_(n→+∞)  S_n   = ∫_0 ^1       (dx/(1+x^2  +x^4 ))  x^4  +x^2  +1 = (x^2  +1)^2  −x^2 =(x^2  +1−x)(x^2  +1+x)  let decompose F(x)= (1/((x^2  +x+1)(x^2 −x+1)))  F(x) = ((ax+b)/(x^2  +x+1)) +((cx+d)/(x^2 −x+1))  F(−x) =F(x)⇒ ((−ax+b)/(x^2  −x+1)) +((−cx +d)/(x^2 +x+1)) =F(x) ⇒  c=−a  and  b=d ⇒  F(x) = ((ax+b)/(x^2 +x+1)) +((−ax +b)/(x^2  −x +1))  F(0) =1 = 2b ⇒ b=(1/2) ⇒  F(x)= (1/2)(  ((2ax+1)/(x^2  +x+1)) +((−2ax +1)/(x^2 −x+1)))  F(1) =(1/3) = (1/2)(  ((2a+1)/3) +((−2a+1)/1))⇒  1=(1/2)(  2a +1 −6a+3)=(1/2)(−4a+4)= −2a+2 ⇒  −2a=−1 ⇒ a =(1/2) ⇒  F(x) =(1/2)(   ((x+1)/(x^2  +x+1)) −((x−1)/(x^2  −x +1)))  ∫_0 ^1     (dx/(x^4  +x^2  +1)) =(1/4)∫_0 ^1    ((2x+2)/(x^2  +x +1))dx −(1/4)∫_0 ^1   ((2x−2)/(x^2  +x+1))dx  ∫_0 ^1    ((2x+2)/(x^2  +x+1))dx =∫_0 ^1   ((2x+1)/(x^2  +x+1))dx +∫_0 ^1     (dx/(x^2  +x+1))  =[ln(x^2 +x+1)]_0 ^1   + ∫_0 ^1      (dx/((x+(1/2))^2  +(3/4))) (x+(1/2)=((√3)/2)u  =ln(3)  + ∫_(1/(√3)) ^(√3)       (1/((3/4)( 1+u^2 ))) ((√3)/2)du  =ln(3) +(4/3) ((√3)/2) ∫_(1/(√3)) ^(√3)     (du/(1+u^2 ))   =ln(3) +((2(√3))/3) (arctan((√3)) −arctan((1/(√3)))) ....

letputSn=n3k=1n1n4+k2n2+k4Sn=1nk=1n11+k2n2+k4n4soSnisaRiemansumandlimn+Sn=01dx1+x2+x4x4+x2+1=(x2+1)2x2=(x2+1x)(x2+1+x)letdecomposeF(x)=1(x2+x+1)(x2x+1)F(x)=ax+bx2+x+1+cx+dx2x+1F(x)=F(x)ax+bx2x+1+cx+dx2+x+1=F(x)c=aandb=dF(x)=ax+bx2+x+1+ax+bx2x+1F(0)=1=2bb=12F(x)=12(2ax+1x2+x+1+2ax+1x2x+1)F(1)=13=12(2a+13+2a+11)1=12(2a+16a+3)=12(4a+4)=2a+22a=1a=12F(x)=12(x+1x2+x+1x1x2x+1)01dxx4+x2+1=14012x+2x2+x+1dx14012x2x2+x+1dx012x+2x2+x+1dx=012x+1x2+x+1dx+01dxx2+x+1=[ln(x2+x+1)]01+01dx(x+12)2+34(x+12=32u=ln(3)+133134(1+u2)32du=ln(3)+4332133du1+u2=ln(3)+233(arctan(3)arctan(13))....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com