All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 34217 by abdo imad last updated on 02/May/18
calculatelimn→+∞n3∑k=1n1n4+k2n2+k4.
Commented by math khazana by abdo last updated on 04/May/18
letputSn=n3∑k=1n1n4+k2n2+k4Sn=1n∑k=1n11+k2n2+k4n4soSnisaRiemansumandlimn→+∞Sn=∫01dx1+x2+x4x4+x2+1=(x2+1)2−x2=(x2+1−x)(x2+1+x)letdecomposeF(x)=1(x2+x+1)(x2−x+1)F(x)=ax+bx2+x+1+cx+dx2−x+1F(−x)=F(x)⇒−ax+bx2−x+1+−cx+dx2+x+1=F(x)⇒c=−aandb=d⇒F(x)=ax+bx2+x+1+−ax+bx2−x+1F(0)=1=2b⇒b=12⇒F(x)=12(2ax+1x2+x+1+−2ax+1x2−x+1)F(1)=13=12(2a+13+−2a+11)⇒1=12(2a+1−6a+3)=12(−4a+4)=−2a+2⇒−2a=−1⇒a=12⇒F(x)=12(x+1x2+x+1−x−1x2−x+1)∫01dxx4+x2+1=14∫012x+2x2+x+1dx−14∫012x−2x2+x+1dx∫012x+2x2+x+1dx=∫012x+1x2+x+1dx+∫01dxx2+x+1=[ln(x2+x+1)]01+∫01dx(x+12)2+34(x+12=32u=ln(3)+∫133134(1+u2)32du=ln(3)+4332∫133du1+u2=ln(3)+233(arctan(3)−arctan(13))....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com