Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34221 by abdo imad last updated on 03/May/18

study the convergence of ∫_0 ^1   ((√(1−x))/x) dx .

$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\sqrt{\mathrm{1}−{x}}}{{x}}\:{dx}\:. \\ $$

Commented by math khazana by abdo last updated on 04/May/18

let put x= sin^2 θ  ⇒ I = ∫_0 ^(π/2)  ((cosθ)/(sin^2 θ)) .2sinθ cosθ dθ  = ∫_0 ^(π/2)   ((2cos^2 θ)/(sinθ)) dθ = 2 ∫_0 ^(π/2)  ((1−sin^2 θ)/(sinθ))dθ  = 2 ∫_0 ^(π/2)   (dθ/(sinθ))  −2 ∫_0 ^(π/2)  sinθ dθ  but we have  ∫_0 ^(π/2)  sinθ dθ= [−cosθ]_0 ^(π/2) =1  and ch. tan((θ/2))=x give   ∫_ξ ^(π/2)    (dθ/(sinθ)) = ∫_ξ ^(π/4)    (1/((2x)/(1+x^2 ))) ((2dx)/(1+x^2 )) = ∫_ξ ^(π/4)   (dx/x)  =ln((π/4)) −lnξ   so lim_(ξ→0^+ )    ∫_ξ ^(π/4)    (dθ/(sinθ)) = +∞  ⇒ I is divergent.

$${let}\:{put}\:{x}=\:{sin}^{\mathrm{2}} \theta\:\:\Rightarrow\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{cos}\theta}{{sin}^{\mathrm{2}} \theta}\:.\mathrm{2}{sin}\theta\:{cos}\theta\:{d}\theta \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{2}{cos}^{\mathrm{2}} \theta}{{sin}\theta}\:{d}\theta\:=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}−{sin}^{\mathrm{2}} \theta}{{sin}\theta}{d}\theta \\ $$$$=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{d}\theta}{{sin}\theta}\:\:−\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\theta\:{d}\theta\:\:{but}\:{we}\:{have} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\theta\:{d}\theta=\:\left[−{cos}\theta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\mathrm{1}\:\:{and}\:{ch}.\:{tan}\left(\frac{\theta}{\mathrm{2}}\right)={x}\:{give} \\ $$$$\:\int_{\xi} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{d}\theta}{{sin}\theta}\:=\:\int_{\xi} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{\mathrm{1}}{\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:=\:\int_{\xi} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dx}}{{x}} \\ $$$$={ln}\left(\frac{\pi}{\mathrm{4}}\right)\:−{ln}\xi\:\:\:{so}\:{lim}_{\xi\rightarrow\mathrm{0}^{+} } \:\:\:\int_{\xi} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{d}\theta}{{sin}\theta}\:=\:+\infty \\ $$$$\Rightarrow\:{I}\:{is}\:{divergent}. \\ $$

Answered by Joel578 last updated on 03/May/18

I = lim_(t→0^+ )  (∫_t ^1  ((√(1 − x))/x) dx)    ∫_t ^1  ((√(1 − x))/x) dx  (u = (√(1− x))  →  du = −(1/(2u)) dx)  = −∫_(√(1−t)) ^0  ((2u^2 )/(1 − u^2 )) du = 2∫_(√(1−t)) ^0  (u^2 /(u^2  − 1)) du  = 2 ∫_(√(1−t)) ^0   (1 + (1/(u^2  − 1))) du  = 2 ∫_(√(1−t)) ^0  (1 + (1/(2(u − 1))) − (1/(2(u + 1)))) du  = 2 [u + (1/2) ln (((u − 1)/(u + 1)))]_(√(1−t)) ^0   = 2[0  + (1/2) ln (−1) − (√(1−t)) − (1/2) ln ((((√(1−t)) − 1)/((√(1−t)) + 1)))]  = iπ − 2(√(1−t)) − ln ((((√(1−t)) − 1)/((√(1−t)) + 1)))    I = lim_(t→0^+ )   [iπ − 2(√(1−t)) − ln ((((√(1−t)) − 1)/((√(1−t)) + 1)))]      = iπ − 2 − ln 0      = ∞  The integral doesnt converge

$${I}\:=\:\underset{{t}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left(\int_{{t}} ^{\mathrm{1}} \:\frac{\sqrt{\mathrm{1}\:−\:{x}}}{{x}}\:{dx}\right) \\ $$$$ \\ $$$$\int_{{t}} ^{\mathrm{1}} \:\frac{\sqrt{\mathrm{1}\:−\:{x}}}{{x}}\:{dx}\:\:\left({u}\:=\:\sqrt{\mathrm{1}−\:{x}}\:\:\rightarrow\:\:{du}\:=\:−\frac{\mathrm{1}}{\mathrm{2}{u}}\:{dx}\right) \\ $$$$=\:−\int_{\sqrt{\mathrm{1}−{t}}} ^{\mathrm{0}} \:\frac{\mathrm{2}{u}^{\mathrm{2}} }{\mathrm{1}\:−\:{u}^{\mathrm{2}} }\:{du}\:=\:\mathrm{2}\int_{\sqrt{\mathrm{1}−{t}}} ^{\mathrm{0}} \:\frac{{u}^{\mathrm{2}} }{{u}^{\mathrm{2}} \:−\:\mathrm{1}}\:{du} \\ $$$$=\:\mathrm{2}\:\int_{\sqrt{\mathrm{1}−{t}}} ^{\mathrm{0}} \:\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{u}^{\mathrm{2}} \:−\:\mathrm{1}}\right)\:{du} \\ $$$$=\:\mathrm{2}\:\int_{\sqrt{\mathrm{1}−{t}}} ^{\mathrm{0}} \:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2}\left({u}\:−\:\mathrm{1}\right)}\:−\:\frac{\mathrm{1}}{\mathrm{2}\left({u}\:+\:\mathrm{1}\right)}\right)\:{du} \\ $$$$=\:\mathrm{2}\:\left[{u}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{ln}\:\left(\frac{{u}\:−\:\mathrm{1}}{{u}\:+\:\mathrm{1}}\right)\right]_{\sqrt{\mathrm{1}−{t}}} ^{\mathrm{0}} \\ $$$$=\:\mathrm{2}\left[\mathrm{0}\:\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{ln}\:\left(−\mathrm{1}\right)\:−\:\sqrt{\mathrm{1}−{t}}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{ln}\:\left(\frac{\sqrt{\mathrm{1}−{t}}\:−\:\mathrm{1}}{\sqrt{\mathrm{1}−{t}}\:+\:\mathrm{1}}\right)\right] \\ $$$$=\:{i}\pi\:−\:\mathrm{2}\sqrt{\mathrm{1}−{t}}\:−\:\mathrm{ln}\:\left(\frac{\sqrt{\mathrm{1}−{t}}\:−\:\mathrm{1}}{\sqrt{\mathrm{1}−{t}}\:+\:\mathrm{1}}\right) \\ $$$$ \\ $$$${I}\:=\:\underset{{t}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\:\left[{i}\pi\:−\:\mathrm{2}\sqrt{\mathrm{1}−{t}}\:−\:\mathrm{ln}\:\left(\frac{\sqrt{\mathrm{1}−{t}}\:−\:\mathrm{1}}{\sqrt{\mathrm{1}−{t}}\:+\:\mathrm{1}}\right)\right] \\ $$$$\:\:\:\:=\:{i}\pi\:−\:\mathrm{2}\:−\:\mathrm{ln}\:\mathrm{0} \\ $$$$\:\:\:\:=\:\infty \\ $$$$\mathrm{The}\:\mathrm{integral}\:\mathrm{doesnt}\:\mathrm{converge} \\ $$

Commented by math khazana by abdo last updated on 04/May/18

sir joel from where come the complex iπ  the  integral is real....

$${sir}\:{joel}\:{from}\:{where}\:{come}\:{the}\:{complex}\:{i}\pi\:\:{the} \\ $$$${integral}\:{is}\:{real}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com