Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34227 by abdo imad last updated on 03/May/18

calculate ∫_0 ^1  arctan(x^2 )dx

calculate01arctan(x2)dx

Commented by math khazana by abdo last updated on 04/May/18

let put I = ∫_0 ^1  arctan(x^2 )dx by parts u^′ =1 and   v=arctan(x^2 ) ⇒ I = [x arctan(x^2 )]_0 ^1  −∫_0 ^1  x((2x)/(1+x^4 ))dx  =(π/4) −2 ∫_0 ^1     (x^2 /(1+x^4 ))dx let decompose  F(x)= (x^2 /(1+x^4 )) = (x^2 /((x^2 +1)^2  −2x^2 )) = (x^2 /((x^2  −(√2)x+1)(x^2 +(√2)x +1)))  F(x)= ((ax+b)/(x^2  −(√2)x+1 )) +((cx+d)/(x^2  +(√2)x +1))  F(−x) =F(x) ⇒ c=−a and d=b ⇒  F(x) = ((ax +b)/(x^2  −(√2)x +1)) +((−ax+b)/(x^2  +(√2)x +1))  F(0)=0 =2b ⇒b=0 ⇒  F(x)=  ((ax)/(x^2  −(√2)x +1)) −((ax)/(x^2  +(√2)x+1))  F(1) =(1/2) = (a/(2−(√2))) −(a/(2+(√2))) =(((2+(√2)−2+(√2))/2))a  =(√2) a ⇒a= (1/(2(√2))) ⇒  F(x)= (1/(2(√2)))(  (x/(x^2  −(√2)x+1)) −(x/(x^2  +(√2)x+1)))  ∫_0 ^1   (x^2 /(1+x^4 ))dx = (1/(2(√2))) ∫_0 ^1      (x/(x^2  −(√2)x+1))dx −(1/(2(√2)))∫_0 ^1   (x/(x^2  +(√2)x+1))dx

letputI=01arctan(x2)dxbypartsu=1andv=arctan(x2)I=[xarctan(x2)]0101x2x1+x4dx=π4201x21+x4dxletdecomposeF(x)=x21+x4=x2(x2+1)22x2=x2(x22x+1)(x2+2x+1)F(x)=ax+bx22x+1+cx+dx2+2x+1F(x)=F(x)c=aandd=bF(x)=ax+bx22x+1+ax+bx2+2x+1F(0)=0=2bb=0F(x)=axx22x+1axx2+2x+1F(1)=12=a22a2+2=(2+22+22)a=2aa=122F(x)=122(xx22x+1xx2+2x+1)01x21+x4dx=12201xx22x+1dx12201xx2+2x+1dx

Commented by math khazana by abdo last updated on 04/May/18

∫_0 ^1      (x/(x^2  −(√2)x +1))dx = (1/2)∫_0 ^1  ((2x−(√2) +(√2))/(x^2  −(√2)x +1))dx  =(1/2)[ln(x^2  −(√2)x+1)]_0 ^1   +((√2)/2) ∫_0 ^1      (dx/(x^2  −(√2)x +1))  =(1/2)ln(2−(√2))  +((√2)/2) ∫_0 ^1      (dx/(x^2  −(√2) x+1))  but  ∫_0 ^1     (dx/(x^2  −(√2) x+1)) = ∫_0 ^1     (dx/(x^2  −2((√2)/2)x +(1/4) +(3/4)))  = ∫_0 ^1      (dx/((x−((√2)/2))^2  +(3/4))) =_(x−((√2)/2)=((√3)/2)t)    ∫_(−((√2)/(√3))) ^((2/(√3))(1−((√2)/2)))      ((((√3)/2)dt)/((3/4)(1+t^2 )))  =(4/3) ((√3)/2) ∫_(−((√2)/(√3))) ^((2/(√3)) −((√2)/(√3)))    (dt/(1+t^2 )) = ((2(√3))/3) (arctan((2/(√3))−((√2)/(√3))) +arctan(((√2)/(√3))))⇒  ∫_0 ^1      (x/(x^2  −(√2)x +1))dx =(1/2)ln(2−(√2))  +((2(√3))/3) ( arctan((2/(√3)) −((√2)/(√3))) +arctan(((√2)/(√3))))   ∫_0 ^1      (x/(x^2  +(√2)x +1))dx =_(x=−t)   ∫_0 ^(−1)    ((tdt)/(t^2  −(√2) t +1))  and this caculated above....

01xx22x+1dx=12012x2+2x22x+1dx=12[ln(x22x+1)]01+2201dxx22x+1=12ln(22)+2201dxx22x+1but01dxx22x+1=01dxx2222x+14+34=01dx(x22)2+34=x22=32t2323(122)32dt34(1+t2)=4332232323dt1+t2=233(arctan(2323)+arctan(23))01xx22x+1dx=12ln(22)+233(arctan(2323)+arctan(23))01xx2+2x+1dx=x=t01tdtt22t+1andthiscaculatedabove....

Answered by tanmay.chaudhury50@gmail.com last updated on 03/May/18

let I=∫tan^(−1) (x^2 )dx  =tan^(−1) (x^2 )∫dx−∫[(d/dx)tan^(−1) x^(2.) .∫dx]dx  =xtan^(−1 ) (x^2 )−∫((2x)/(1+x^4  )).xdx  =xtan^(−1) x−2∫(x^2 /(1+x^4 ))dx  i have alredy solved ∫(x^2 /(1+x^4 ))dx  pls co−relate

letI=tan1(x2)dx=tan1(x2)dx[ddxtan1x2..dx]dx=xtan1(x2)2x1+x4.xdx=xtan1x2x21+x4dxihavealredysolvedx21+x4dxplscorelate

Terms of Service

Privacy Policy

Contact: info@tinkutara.com