All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 34228 by abdo imad last updated on 03/May/18
findthevalueof∫01x21+x4dx
Commented by tanmay.chaudhury50@gmail.com last updated on 03/May/18
letI=∫x21+x4dx=∫1x2+1x2dx=12∫(1+1x2)+(1−1x2)x2+1x2dx=12∫(1+1x2)(x−1x)2+2+12∫(1−1x2)(x+1x)2−2=12∫d(x−1x)(x−1x)2+2+12∫d(x+1x)(x+1x)2−2=12.12.tan−1{(x−1x)2}+12.122.ln∣2−(x+1x)2+(x+1xnowgivenintregalhasupperlimit1andlowerlimitlimit0putthelimit
Terms of Service
Privacy Policy
Contact: info@tinkutara.com