All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36430 by prof Abdo imad last updated on 02/Jun/18
find∫ln(x+x2)x2dx
Commented by abdo mathsup last updated on 03/Jun/18
letintegratebypartsu′=1x2andv=ln(x+x2)I=−1xln(x+x2)+∫1x2x+1x+x2dx=−ln(x+x2)x+∫2x+1x2(x+1)dxbut∫2x+1x2(x+1)dx=∫2(x+1)−1x2(x+1)dx=2∫dxx2−∫dxx2(x+1)=−2x−∫dxx2(x+1)F(x)=1x2(x+1)=ax+bx2+cx+1b=limx→0x2F(x)=1c=limx→−1(x+1)F(x)=1⇒F(x)=1x+bx2+1x+1F(1)=12=1+b+12⇒b=−1⇒F(x)=1x−1x2+1x+1⇒∫F(x)dx=ln∣x∣+1x−ln∣x+1∣+c⇒I=−ln(x2+x)x−2x−ln∣x∣−1x+ln∣x+1∣+c⇒I=−ln(x2+x)x−3x−ln∣x∣+ln∣x+1∣+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
ln(x+x2)×−1x−∫1x+x2×(1+2x)×−1xdx−ln(x+x2)x+∫1+2xx2(1+x)dxI2=∫1+2xx2(1+x)dx=∫1+x+xx2(1+x)dx=∫dxx2+∫dxx(1+x)=∫x−2dx+∫1+x−xx(1+x)dx=−1x+∫dxx−∫dx1+x=−1x+ln(x1+x)=−ln(x+x2)x−1x+lnx1+x
Terms of Service
Privacy Policy
Contact: info@tinkutara.com