Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34297 by math khazana by abdo last updated on 03/May/18

find  ∫_(−∞) ^(+∞)   e^(−z t^2 ) dt   with z=r e^(iθ)   ∈ C .

find+ezt2dtwithz=reiθC.

Commented by abdo mathsup 649 cc last updated on 04/May/18

let put I =∫_(−∞) ^(+∞)  e^(−zt^2 ) dt ⇒ I = ∫_(−∞) ^(+∞)   e^(−re^(iθ) t^2 ) dt  I = ∫_(−∞) ^(+∞)    e^(−((√r) e^(i(θ/2))  t)^2 ) dt   changement (√r)  e^(i(θ/2))   t =u  give I  =  (1/(√r)) e^(−i(θ/2))   ∫_(−∞) ^(++∞)   e^(−u^2 ) du  I = ((√π)/(√r))  e^(−i(θ/2)) = ((√π)/(√r))  ( cos((θ/2)) −i sin((θ/2)))  (r>0)

letputI=+ezt2dtI=+ereiθt2dtI=+e(reiθ2t)2dtchangementreiθ2t=ugiveI=1reiθ2++eu2duI=πreiθ2=πr(cos(θ2)isin(θ2))(r>0)

Answered by candre last updated on 03/May/18

I=∫_(−∞) ^(+∞) e^(−zt^2 ) dt  I^2 =(∫_(−∞) ^(+∞) e^(−zt^2 ) dt)^2 =∫_(−∞) ^(+∞) e^(−zx^2 ) dx∫_(−∞) ^(+∞) e^(−zy^2 ) dy  =∫_(−∞) ^(+∞) ∫_(−∞) ^(+∞) e^(−z(x^2 +y^2 )) dxdy  (x,y)=ρ(cos ϕ,sin ϕ)  ((∂(x,y))/(∂(ρ,ϕ)))dρdϕ= determinant (((∂x/∂ρ),(∂y/∂ρ)),((∂x/∂ϕ),(∂y/∂ϕ)))dρdϕ= determinant (((cos ϕ),(sin ϕ)),((−ρsin ϕ),(ρcos ϕ)))dρdϕ  =ρdρdϕ  −∞<x<+∞,−∞<y<+∞≡0≤ρ<∞,0≤ϕ<2π  I^2 =∫_0 ^(2π) ∫_0 ^(+∞) e^(−zρ^2 ) ρdρdϕ  =∫_0 ^(2π) dϕ∫_0 ^∞ e^(−zρ^2 ) ρdρ  ∫_0 ^(2π) dϕ=2π  ∫_0 ^∞ e^(−zρ^2 ) ρdρ=(1/(2z))∫_(−∞) ^0 e^u du=(1/(2z))  u=−zρ^2   du=−2zρdρ  I^2 =(π/z)  I=(√(π/z))     (ℜ(z)>0)

I=+ezt2dtI2=(+ezt2dt)2=+ezx2dx+ezy2dy=++ez(x2+y2)dxdy(x,y)=ρ(cosφ,sinφ)(x,y)(ρ,φ)dρdφ=|xρyρxφyφ|dρdφ=|cosφsinφρsinφρcosφ|dρdφ=ρdρdφ<x<+,<y<+0ρ<,0φ<2πI2=2π0+0ezρ2ρdρdφ=2π0dφ0ezρ2ρdρ2π0dφ=2π0ezρ2ρdρ=12z0eudu=12zu=zρ2du=2zρdρI2=πzI=πz((z)>0)

Commented by math khazana by abdo last updated on 04/May/18

your method is correct sir candart...thanks...

yourmethodiscorrectsircandart...thanks...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com