Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34297 by math khazana by abdo last updated on 03/May/18

find  ∫_(−∞) ^(+∞)   e^(−z t^2 ) dt   with z=r e^(iθ)   ∈ C .

$${find}\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{z}\:{t}^{\mathrm{2}} } {dt}\:\:\:{with}\:{z}={r}\:{e}^{{i}\theta} \:\:\in\:{C}\:. \\ $$

Commented by abdo mathsup 649 cc last updated on 04/May/18

let put I =∫_(−∞) ^(+∞)  e^(−zt^2 ) dt ⇒ I = ∫_(−∞) ^(+∞)   e^(−re^(iθ) t^2 ) dt  I = ∫_(−∞) ^(+∞)    e^(−((√r) e^(i(θ/2))  t)^2 ) dt   changement (√r)  e^(i(θ/2))   t =u  give I  =  (1/(√r)) e^(−i(θ/2))   ∫_(−∞) ^(++∞)   e^(−u^2 ) du  I = ((√π)/(√r))  e^(−i(θ/2)) = ((√π)/(√r))  ( cos((θ/2)) −i sin((θ/2)))  (r>0)

$${let}\:{put}\:{I}\:=\int_{−\infty} ^{+\infty} \:{e}^{−{zt}^{\mathrm{2}} } {dt}\:\Rightarrow\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{re}^{{i}\theta} {t}^{\mathrm{2}} } {dt} \\ $$$${I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{−\left(\sqrt{{r}}\:{e}^{{i}\frac{\theta}{\mathrm{2}}} \:{t}\right)^{\mathrm{2}} } {dt}\:\:\:{changement}\:\sqrt{{r}}\:\:{e}^{{i}\frac{\theta}{\mathrm{2}}} \:\:{t}\:={u} \\ $$$${give}\:{I}\:\:=\:\:\frac{\mathrm{1}}{\sqrt{{r}}}\:{e}^{−{i}\frac{\theta}{\mathrm{2}}} \:\:\int_{−\infty} ^{++\infty} \:\:{e}^{−{u}^{\mathrm{2}} } {du} \\ $$$${I}\:=\:\frac{\sqrt{\pi}}{\sqrt{{r}}}\:\:{e}^{−{i}\frac{\theta}{\mathrm{2}}} =\:\frac{\sqrt{\pi}}{\sqrt{{r}}}\:\:\left(\:{cos}\left(\frac{\theta}{\mathrm{2}}\right)\:−{i}\:{sin}\left(\frac{\theta}{\mathrm{2}}\right)\right)\:\:\left({r}>\mathrm{0}\right) \\ $$

Answered by candre last updated on 03/May/18

I=∫_(−∞) ^(+∞) e^(−zt^2 ) dt  I^2 =(∫_(−∞) ^(+∞) e^(−zt^2 ) dt)^2 =∫_(−∞) ^(+∞) e^(−zx^2 ) dx∫_(−∞) ^(+∞) e^(−zy^2 ) dy  =∫_(−∞) ^(+∞) ∫_(−∞) ^(+∞) e^(−z(x^2 +y^2 )) dxdy  (x,y)=ρ(cos ϕ,sin ϕ)  ((∂(x,y))/(∂(ρ,ϕ)))dρdϕ= determinant (((∂x/∂ρ),(∂y/∂ρ)),((∂x/∂ϕ),(∂y/∂ϕ)))dρdϕ= determinant (((cos ϕ),(sin ϕ)),((−ρsin ϕ),(ρcos ϕ)))dρdϕ  =ρdρdϕ  −∞<x<+∞,−∞<y<+∞≡0≤ρ<∞,0≤ϕ<2π  I^2 =∫_0 ^(2π) ∫_0 ^(+∞) e^(−zρ^2 ) ρdρdϕ  =∫_0 ^(2π) dϕ∫_0 ^∞ e^(−zρ^2 ) ρdρ  ∫_0 ^(2π) dϕ=2π  ∫_0 ^∞ e^(−zρ^2 ) ρdρ=(1/(2z))∫_(−∞) ^0 e^u du=(1/(2z))  u=−zρ^2   du=−2zρdρ  I^2 =(π/z)  I=(√(π/z))     (ℜ(z)>0)

$${I}=\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−{zt}^{\mathrm{2}} } {dt} \\ $$$${I}^{\mathrm{2}} =\left(\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−{zt}^{\mathrm{2}} } {dt}\right)^{\mathrm{2}} =\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−{zx}^{\mathrm{2}} } {dx}\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−{zy}^{\mathrm{2}} } {dy} \\ $$$$=\underset{−\infty} {\overset{+\infty} {\int}}\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−{z}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy} \\ $$$$\left({x},{y}\right)=\rho\left(\mathrm{cos}\:\varphi,\mathrm{sin}\:\varphi\right) \\ $$$$\frac{\partial\left({x},{y}\right)}{\partial\left(\rho,\varphi\right)}{d}\rho{d}\varphi=\begin{vmatrix}{\frac{\partial{x}}{\partial\rho}}&{\frac{\partial{y}}{\partial\rho}}\\{\frac{\partial{x}}{\partial\varphi}}&{\frac{\partial{y}}{\partial\varphi}}\end{vmatrix}{d}\rho{d}\varphi=\begin{vmatrix}{\mathrm{cos}\:\varphi}&{\mathrm{sin}\:\varphi}\\{−\rho\mathrm{sin}\:\varphi}&{\rho\mathrm{cos}\:\varphi}\end{vmatrix}{d}\rho{d}\varphi \\ $$$$=\rho{d}\rho{d}\varphi \\ $$$$−\infty<{x}<+\infty,−\infty<{y}<+\infty\equiv\mathrm{0}\leqslant\rho<\infty,\mathrm{0}\leqslant\varphi<\mathrm{2}\pi \\ $$$${I}^{\mathrm{2}} =\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\underset{\mathrm{0}} {\overset{+\infty} {\int}}{e}^{−{z}\rho^{\mathrm{2}} } \rho{d}\rho{d}\varphi \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}{d}\varphi\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{z}\rho^{\mathrm{2}} } \rho{d}\rho \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}{d}\varphi=\mathrm{2}\pi \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{z}\rho^{\mathrm{2}} } \rho{d}\rho=\frac{\mathrm{1}}{\mathrm{2}{z}}\underset{−\infty} {\overset{\mathrm{0}} {\int}}{e}^{{u}} {du}=\frac{\mathrm{1}}{\mathrm{2}{z}} \\ $$$${u}=−{z}\rho^{\mathrm{2}} \\ $$$${du}=−\mathrm{2}{z}\rho{d}\rho \\ $$$${I}^{\mathrm{2}} =\frac{\pi}{{z}} \\ $$$${I}=\sqrt{\frac{\pi}{{z}}}\:\:\:\:\:\left(\Re\left({z}\right)>\mathrm{0}\right) \\ $$

Commented by math khazana by abdo last updated on 04/May/18

your method is correct sir candart...thanks...

$${your}\:{method}\:{is}\:{correct}\:{sir}\:{candart}...{thanks}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com