Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34298 by math khazana by abdo last updated on 03/May/18

let A_  = ∫_0 ^∞  e^(−x) cos[x]dx  and B = ∫_0 ^∞  e^(−[x])  cosxdx  calculate A−B  .

letA=0excos[x]dxandB=0e[x]cosxdxcalculateAB.

Commented by math khazana by abdo last updated on 08/May/18

A =lim_(n→+∞)   Σ_(k=0) ^(n−1)   ∫_k ^(k+1)  e^(−x)  cosk dx but  Σ_(k=0) ^(n−1)  ∫_k ^(k+1)  e^(−x)  cosk dx=Σ_(k=0) ^(n−1)  cosk[−e^(−x) ]_k ^(k+1)   = Σ_(k=0) ^(n−1)  cosk ( e^(−k)   −e^(−(k+1)) )  = Σ_(k=0) ^(n−1)   e^(−k)  cosk −Σ_(k=0) ^(n−1)  e^(−(k+1))  cosk ⇒  A = Σ_(k=0) ^∞  e^(−k)  cosk  −Σ_(k=0) ^∞  e^(−(k+1))  cosk  =Σ_(k=0) ^∞  e^(−k)  cosk  −e^(−1) Σ_(k=1) ^∞  e^(−k)  cosk  =Σ_(k=0) ^∞  e^(−k)  cosk −e^(−1) (Σ_(k=0) ^∞   e^(−k)  cosk −1)  =(1−e^(−1) )Σ_(k=0) ^∞  e^(−k)  cosk  +(1/e)  Σ_(k=0) ^∞   e^(−k)  cosk =Re( Σ_(k=0) ^∞  e^(−k +ik) )  Σ_(k=0) ^∞   e^((−1+i)k) = Σ_(k=0) ^∞  (e^(−1+i) )^k  = (1/(1−e^(−1+i) ))  because ∣e^(−1+i) ∣<1  = (1/(1−e^(−1) (cos(1)+i sin1))) = (1/(1−e^(−1) cos1 −i e^(−1) sin(1)))  =((1−e^(−1)  cos(1) +i e^(−1)  sin(1))/((1−e^(−1) cos(1))^2   +e^(−2)  sin^2 (1))) ⇒  Σ_(k=0) ^∞  e^(−k)  cos(k) =  ((1−e^(−1)  cos(1))/(1−2 e^(−1) cos(1) +e^(−2) )) ⇒  A =(((1−e^(−1) )(1−e^(−1)  cos(1)))/(1−2 e^(−1)  cos(1) +e^(−2) ))  +(1/e) .

A=limn+k=0n1kk+1excoskdxbutk=0n1kk+1excoskdx=k=0n1cosk[ex]kk+1=k=0n1cosk(eke(k+1))=k=0n1ekcoskk=0n1e(k+1)coskA=k=0ekcoskk=0e(k+1)cosk=k=0ekcoske1k=1ekcosk=k=0ekcoske1(k=0ekcosk1)=(1e1)k=0ekcosk+1ek=0ekcosk=Re(k=0ek+ik)k=0e(1+i)k=k=0(e1+i)k=11e1+ibecausee1+i∣<1=11e1(cos(1)+isin1)=11e1cos1ie1sin(1)=1e1cos(1)+ie1sin(1)(1e1cos(1))2+e2sin2(1)k=0ekcos(k)=1e1cos(1)12e1cos(1)+e2A=(1e1)(1e1cos(1))12e1cos(1)+e2+1e.

Commented by abdo mathsup 649 cc last updated on 08/May/18

B =lim_(n→+∞)  Σ_(k=0) ^(n−1)   ∫_k ^(k+1)  e^(−k)  cosxdx  =Σ_(k=0) ^(n−1)  e^(−k) [sinx]_k ^(k+1)   =Σ_(k=0) ^(n−1)  e^(−k) ( sin(k+1)−sink)  =Σ_(k=0) ^(n−1)  e^(−k)  sin(k+1) −Σ_(k=0) ^(n−1)  e^(−k)  sink  =Σ_(k=1) ^n  e^(−(k−1)) sink −Σ_(k=0) ^(n−1)  e^(−k)  sink  =e( Σ_(k=1) ^n  e^(−k)  sink) −Σ_(k=0) ^(n−1)  e^(−k)  sink  ⇒ B = (e−1) Σ_(k=0) ^∞  e^(−k)  sink  =(e−1) Im( Σ_(k=0) ^∞  e^(−k+ik) )  =(e−1) Im( Σ_(k=0) ^∞  e^((−1+i)k) )  Σ_(k=0) ^∞   e^((−1+i)k)  = (1/(1−e^(−1 +i) ))  = (1/(1−e^(−1) (cos1 +i sin(1))))  = (1/(1−e^(−1) cos(1) −ie^(−1)  sin(1)))  = ((1−e^(−1)  cos(1) +i e^(−1)  sin(1))/((1−e^(−1) cos(1))^2   +e^(−2)  sin^2 (1)))  ⇒  B =(((e−1)e^(−1) sin(1))/((1−e^(−1) cos(1))^2   + e^(−2)  sin^2 (1)))  so the value of A −B is known.

B=limn+k=0n1kk+1ekcosxdx=k=0n1ek[sinx]kk+1=k=0n1ek(sin(k+1)sink)=k=0n1eksin(k+1)k=0n1eksink=k=1ne(k1)sinkk=0n1eksink=e(k=1neksink)k=0n1eksinkB=(e1)k=0eksink=(e1)Im(k=0ek+ik)=(e1)Im(k=0e(1+i)k)k=0e(1+i)k=11e1+i=11e1(cos1+isin(1))=11e1cos(1)ie1sin(1)=1e1cos(1)+ie1sin(1)(1e1cos(1))2+e2sin2(1)B=(e1)e1sin(1)(1e1cos(1))2+e2sin2(1)sothevalueofABisknown.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com