Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 34307 by prof Abdo imad last updated on 03/May/18

let give A_n =   (((1         (α/n))),((−(α/n)      1)) )  calculate lim_(n→+∞)  A_n ^n     .

$${let}\:{give}\:{A}_{{n}} =\:\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\frac{\alpha}{{n}}}\\{−\frac{\alpha}{{n}}\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} ^{{n}} \:\:\:\:. \\ $$

Commented by math khazana by abdo last updated on 06/May/18

we have (√(1 +(α^2 /n^2 ))) =(1/n)(√(n^2  +α^2 ))  ⇒  A_n =(√(1+(α^2 /n^2 )))  . ((( (1/(√(1+(α^2 /n^2 ))))                (α/(n(√(1+(α^2 /n^2 ))))))),((−(α/(n(√(1+(α^2 /n^2 )))))                    (1/(√(1+(α^2 /n^2 )))))) )  A_n =(√(1+(α^2 /n^2 )))   (((cosθ_             sinθ)),((−sinθ        cosθ)) )  with cosθ  = (1/(√(1+(α^2 /n^n ))))  and sinθ = (α/(n.(√(1+(α^2 /n^2 ))))) ⇒  tanθ= (α/n) ⇒ θ=arctan((α/n))  we have  A_n ^n    = (1+(α^2 /n^2 ))^(n/2)    . (((cos(nθ)       sin(nθ))),((−sin(nθ)     cos(nθ)) )  but  (1+(α^2 /n^2 ))^(n/2)  =e^((n/2)ln(1+(α^2 /n^2 )) )   ∼ e^(α^2 /(2n))  →1(n→+∞)  n arctan((α/n))  →α  so lim_(n→+∞)  A_n ^n    =  (((cosα         sinα)),((−sinα      cosα)) )

$${we}\:{have}\:\sqrt{\mathrm{1}\:+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }}\:=\frac{\mathrm{1}}{{n}}\sqrt{{n}^{\mathrm{2}} \:+\alpha^{\mathrm{2}} }\:\:\Rightarrow \\ $$$${A}_{{n}} =\sqrt{\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }}\:\:.\begin{pmatrix}{\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\alpha}{{n}\sqrt{\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}}\\{−\frac{\alpha}{{n}\sqrt{\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}}\end{pmatrix} \\ $$$${A}_{{n}} =\sqrt{\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }}\:\:\begin{pmatrix}{{cos}\theta_{\:} \:\:\:\:\:\:\:\:\:\:\:{sin}\theta}\\{−{sin}\theta\:\:\:\:\:\:\:\:{cos}\theta}\end{pmatrix} \\ $$$${with}\:{cos}\theta\:\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{{n}} }}}\:\:{and}\:{sin}\theta\:=\:\frac{\alpha}{{n}.\sqrt{\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\:\Rightarrow \\ $$$${tan}\theta=\:\frac{\alpha}{{n}}\:\Rightarrow\:\theta={arctan}\left(\frac{\alpha}{{n}}\right) \\ $$$${we}\:{have} \\ $$$${A}_{{n}} ^{{n}} \:\:\:=\:\left(\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)^{\frac{{n}}{\mathrm{2}}} \:\:\:.\begin{pmatrix}{{cos}\left({n}\theta\right)\:\:\:\:\:\:\:{sin}\left({n}\theta\right)}\\{−{sin}\left({n}\theta\right)\:\:\:\:\:{cos}\left({n}\theta\right.}\end{pmatrix} \\ $$$${but}\:\:\left(\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)^{\frac{{n}}{\mathrm{2}}} \:={e}^{\frac{{n}}{\mathrm{2}}{ln}\left(\mathrm{1}+\frac{\alpha^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)\:} \:\:\sim\:{e}^{\frac{\alpha^{\mathrm{2}} }{\mathrm{2}{n}}} \:\rightarrow\mathrm{1}\left({n}\rightarrow+\infty\right) \\ $$$${n}\:{arctan}\left(\frac{\alpha}{{n}}\right)\:\:\rightarrow\alpha\:\:{so}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} ^{{n}} \: \\ $$$$=\:\begin{pmatrix}{{cos}\alpha\:\:\:\:\:\:\:\:\:{sin}\alpha}\\{−{sin}\alpha\:\:\:\:\:\:{cos}\alpha}\end{pmatrix} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com