Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34312 by prof Abdo imad last updated on 03/May/18

calculate I  = ∫∫_D x^3 dxdy   on the domain  D ={(x,y)∈R^2 /1≤x≤2 , x^2 −y^2 −1≥0}

$${calculate}\:{I}\:\:=\:\int\int_{{D}} {x}^{\mathrm{3}} {dxdy}\:\:\:{on}\:{the}\:{domain} \\ $$$${D}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\mathrm{1}\leqslant{x}\leqslant\mathrm{2}\:,\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −\mathrm{1}\geqslant\mathrm{0}\right\} \\ $$

Commented by math khazana by abdo last updated on 05/May/18

x^2  −y^2 −1≥0 ⇒ x^2  −1 ≥y^2  ⇒y^2  ≤ x^2 −1  ⇒ −(√(x^2 −1)) ≤y≤(√(x^2 −1))  I = ∫_1 ^2  ( ∫_(−(√(x^2 −1))) ^(√(x^2 −1))  dy)x^3  dx  = 2 ∫_1 ^2   x^3 (√(x^2 −1))dx   changement x=ch(t) ⇔  t argchx =ln( x +(√(x^2 −1)))  I = 2 ∫_0 ^(ln(2+(√3))) ch^3 t  sh(t)sh(t)dt by parts  u=sht and v^′  =sht ch^3 t  I =2( [(1/4)sht ch^4 t]_0 ^(ln(2+(√3)))  −∫_0 ^(ln(2+(√3)))  cht (1/4)ch^4  dt)  I =(1/2)( sh(ln(2+(√3)))ch^4 (ln(2+(√3)) −(1/2) ∫_0 ^(ln(2+(√3))) ch^5 t dt  but  ch^5 t = (((e^t  +e^(−t) )/2))^5  =(1/(32)) Σ_(k=0) ^5  C_5 ^k   e^(kt)  e^((5−k)t)  ...

$${x}^{\mathrm{2}} \:−{y}^{\mathrm{2}} −\mathrm{1}\geqslant\mathrm{0}\:\Rightarrow\:{x}^{\mathrm{2}} \:−\mathrm{1}\:\geqslant{y}^{\mathrm{2}} \:\Rightarrow{y}^{\mathrm{2}} \:\leqslant\:{x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow\:−\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\:\leqslant{y}\leqslant\sqrt{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${I}\:=\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\left(\:\int_{−\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}} ^{\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}} \:{dy}\right){x}^{\mathrm{3}} \:{dx} \\ $$$$=\:\mathrm{2}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}{dx}\:\:\:{changement}\:{x}={ch}\left({t}\right)\:\Leftrightarrow \\ $$$${t}\:{argchx}\:={ln}\left(\:{x}\:+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$$${I}\:=\:\mathrm{2}\:\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)} {ch}^{\mathrm{3}} {t}\:\:{sh}\left({t}\right){sh}\left({t}\right){dt}\:{by}\:{parts} \\ $$$${u}={sht}\:{and}\:{v}^{'} \:={sht}\:{ch}^{\mathrm{3}} {t} \\ $$$${I}\:=\mathrm{2}\left(\:\left[\frac{\mathrm{1}}{\mathrm{4}}{sht}\:{ch}^{\mathrm{4}} {t}\right]_{\mathrm{0}} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)} \:−\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)} \:{cht}\:\frac{\mathrm{1}}{\mathrm{4}}{ch}^{\mathrm{4}} \:{dt}\right) \\ $$$${I}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\:{sh}\left({ln}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)\right){ch}^{\mathrm{4}} \left({ln}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)} {ch}^{\mathrm{5}} {t}\:{dt}\right.\right. \\ $$$${but}\:\:{ch}^{\mathrm{5}} {t}\:=\:\left(\frac{{e}^{{t}} \:+{e}^{−{t}} }{\mathrm{2}}\right)^{\mathrm{5}} \:=\frac{\mathrm{1}}{\mathrm{32}}\:\sum_{{k}=\mathrm{0}} ^{\mathrm{5}} \:{C}_{\mathrm{5}} ^{{k}} \:\:{e}^{{kt}} \:{e}^{\left(\mathrm{5}−{k}\right){t}} \:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com