Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34315 by prof Abdo imad last updated on 03/May/18

1) find  F(x)= ∫_0 ^(+∞)   ((e^(−at)  −e^(−bt) )/t)sin(xt)dt  with a>0 ,b>0 .

$$\left.\mathrm{1}\right)\:{find}\:\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{e}^{−{at}} \:−{e}^{−{bt}} }{{t}}{sin}\left({xt}\right){dt} \\ $$ $${with}\:{a}>\mathrm{0}\:,{b}>\mathrm{0}\:. \\ $$

Commented bymath khazana by abdo last updated on 05/May/18

we have F^′ (x) = ∫_0 ^∞   (e^(−at)  −e^(−bt) ) cos(xt)dt  =Re( ∫_0 ^∞   (e^(−at)  −e^(−bt) )e^(ixt) dt)  =Re( ∫_0 ^∞   (e^((−a +ix)t)  −e^((−b +ix)t) )dt  but  ∫_0 ^∞    e^((−a+ix)t) dt =  [ (1/(−a +ix)) e^((−1+ix)t) ]_0 ^(+∞)   = (1/(−a +ix)) =((−1)/(a−ix)) =−((a+ix)/(a^2  +x^2 ))  by the same manner  ∫_0 ^∞   e^((−b+ix)t) dt  = −((b +ix)/(b^2  +x^2 )) ⇒  F^′ (x) = Re( ((b+ix)/(b^2  +x^2 )) −((a+ix)/(a^2  +x^2 )))  =(b/(b^2 +x^2 )) − (a/(a^2  +x^2 )) ⇒ F(x)= ∫_0 ^x  (b/(b^2  +t^2 ))dt  −∫_0 ^x   (a/(a^2  +t^2 ))dt +λ   but  ∫_0 ^x    (b/(b^2  +t^2 ))dt =_(t=bu)   ∫_0 ^(x/b)    (b/(b^2 (1+u^2 ))) bdu  = arctan((x/b)) ⇒F(x)= arctan((x/b)) −arctan((x/a)) +λ  λ =F(0) ⇒F(x)=arctan((x/b)) −arctan((x/a)) .

$${we}\:{have}\:{F}^{'} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\left({e}^{−{at}} \:−{e}^{−{bt}} \right)\:{cos}\left({xt}\right){dt} \\ $$ $$={Re}\left(\:\int_{\mathrm{0}} ^{\infty} \:\:\left({e}^{−{at}} \:−{e}^{−{bt}} \right){e}^{{ixt}} {dt}\right) \\ $$ $$={Re}\left(\:\int_{\mathrm{0}} ^{\infty} \:\:\left({e}^{\left(−{a}\:+{ix}\right){t}} \:−{e}^{\left(−{b}\:+{ix}\right){t}} \right){dt}\:\:{but}\right. \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{\left(−{a}+{ix}\right){t}} {dt}\:=\:\:\left[\:\frac{\mathrm{1}}{−{a}\:+{ix}}\:{e}^{\left(−\mathrm{1}+{ix}\right){t}} \right]_{\mathrm{0}} ^{+\infty} \\ $$ $$=\:\frac{\mathrm{1}}{−{a}\:+{ix}}\:=\frac{−\mathrm{1}}{{a}−{ix}}\:=−\frac{{a}+{ix}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:\:{by}\:{the}\:{same}\:{manner} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left(−{b}+{ix}\right){t}} {dt}\:\:=\:−\frac{{b}\:+{ix}}{{b}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:\Rightarrow \\ $$ $${F}^{'} \left({x}\right)\:=\:{Re}\left(\:\frac{{b}+{ix}}{{b}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:−\frac{{a}+{ix}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\right) \\ $$ $$=\frac{{b}}{{b}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:−\:\frac{{a}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:\Rightarrow\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\frac{{b}}{{b}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }{dt} \\ $$ $$−\int_{\mathrm{0}} ^{{x}} \:\:\frac{{a}}{{a}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }{dt}\:+\lambda\:\:\:{but} \\ $$ $$\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{b}}{{b}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }{dt}\:=_{{t}={bu}} \:\:\int_{\mathrm{0}} ^{\frac{{x}}{{b}}} \:\:\:\frac{{b}}{{b}^{\mathrm{2}} \left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:{bdu} \\ $$ $$=\:{arctan}\left(\frac{{x}}{{b}}\right)\:\Rightarrow{F}\left({x}\right)=\:{arctan}\left(\frac{{x}}{{b}}\right)\:−{arctan}\left(\frac{{x}}{{a}}\right)\:+\lambda \\ $$ $$\lambda\:={F}\left(\mathrm{0}\right)\:\Rightarrow{F}\left({x}\right)={arctan}\left(\frac{{x}}{{b}}\right)\:−{arctan}\left(\frac{{x}}{{a}}\right)\:. \\ $$ $$ \\ $$

Commented bymath khazana by abdo last updated on 08/May/18

we know that arctan α −arctanβ =arctan(((α−β)/(1+αβ)))  ⇒F(x) = arctan((((x/b) −(x/a))/(1+(x^2 /(ab)))))  = arctan(((ax−bx)/(x^2   +ab)) ) .

$${we}\:{know}\:{that}\:{arctan}\:\alpha\:−{arctan}\beta\:={arctan}\left(\frac{\alpha−\beta}{\mathrm{1}+\alpha\beta}\right) \\ $$ $$\Rightarrow{F}\left({x}\right)\:=\:{arctan}\left(\frac{\frac{{x}}{{b}}\:−\frac{{x}}{{a}}}{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{ab}}}\right) \\ $$ $$=\:{arctan}\left(\frac{{ax}−{bx}}{{x}^{\mathrm{2}} \:\:+{ab}}\:\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com