Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 34355 by srikarkailash9@gmail.com last updated on 05/May/18

Commented by math khazana by abdo last updated on 05/May/18

let prove by recurrence that   A^n  =  (((p^n         q((p^n −1)/(p−1)))),((0                1)) )  with p≠1 for n=1  A^1 =  (((p        q)),((0          1)) )  relation true let suppose A^n  =  (((p^n          q((p^n −1)/(p−1)))),((0                  1)) )  A^(n+1)  = A^n .A=  (((p^n        q((p^n −1)/(p−1)))),((0               1)) )   . (((p        q  )),((0         1)) )  =    (((p^(n+1)         p^n q +q((p^n −1)/(p−1)))),((0                            1)) )  =  (((p^(n+1)           q(  ((p^(n+1)  −p^n  +p^n −1)/(p−1))))),((0                                      1)) )  =  (((p^(n+1)            q((p^(n+1)  −1)/(p−1)))),((0                         1)) )  the relation is true at term n+1 let take  n=8 ⇒  A^8   =  (((p^8         q((p^8 −1)/(p−1)))),((0                1)) )

$${let}\:{prove}\:{by}\:{recurrence}\:{that}\: \\ $$$${A}^{{n}} \:=\:\begin{pmatrix}{{p}^{{n}} \:\:\:\:\:\:\:\:{q}\frac{{p}^{{n}} −\mathrm{1}}{{p}−\mathrm{1}}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${with}\:{p}\neq\mathrm{1}\:{for}\:{n}=\mathrm{1}\:\:{A}^{\mathrm{1}} =\:\begin{pmatrix}{{p}\:\:\:\:\:\:\:\:{q}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${relation}\:{true}\:{let}\:{suppose}\:{A}^{{n}} \:=\:\begin{pmatrix}{{p}^{{n}} \:\:\:\:\:\:\:\:\:{q}\frac{{p}^{{n}} −\mathrm{1}}{{p}−\mathrm{1}}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${A}^{{n}+\mathrm{1}} \:=\:{A}^{{n}} .{A}=\:\begin{pmatrix}{{p}^{{n}} \:\:\:\:\:\:\:{q}\frac{{p}^{{n}} −\mathrm{1}}{{p}−\mathrm{1}}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}\:\:\:.\begin{pmatrix}{{p}\:\:\:\:\:\:\:\:{q}\:\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$=\:\:\:\begin{pmatrix}{{p}^{{n}+\mathrm{1}} \:\:\:\:\:\:\:\:{p}^{{n}} {q}\:+{q}\frac{{p}^{{n}} −\mathrm{1}}{{p}−\mathrm{1}}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$=\:\begin{pmatrix}{{p}^{{n}+\mathrm{1}} \:\:\:\:\:\:\:\:\:\:{q}\left(\:\:\frac{{p}^{{n}+\mathrm{1}} \:−{p}^{{n}} \:+{p}^{{n}} −\mathrm{1}}{{p}−\mathrm{1}}\right)}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$=\:\begin{pmatrix}{{p}^{{n}+\mathrm{1}} \:\:\:\:\:\:\:\:\:\:\:{q}\frac{{p}^{{n}+\mathrm{1}} \:−\mathrm{1}}{{p}−\mathrm{1}}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${the}\:{relation}\:{is}\:{true}\:{at}\:{term}\:{n}+\mathrm{1}\:{let}\:{take}\:\:{n}=\mathrm{8}\:\Rightarrow \\ $$$${A}^{\mathrm{8}} \:\:=\:\begin{pmatrix}{{p}^{\mathrm{8}} \:\:\:\:\:\:\:\:{q}\frac{{p}^{\mathrm{8}} −\mathrm{1}}{{p}−\mathrm{1}}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$

Answered by srikarkailash9@gmail.com last updated on 05/May/18

solve it step wise

$${solve}\:{it}\:{step}\:{wise} \\ $$

Answered by candre last updated on 05/May/18

A^1 = ((p,q),(0,1) )  A^n = ((a_n ,b_n ),(c_n ,d_n ) )  A^(n+1) = ((a_(n+1) ,b_(n+1) ),(c_(n+1) ,d_(n+1) ) )  =A^n A  = ((a_n ,b_n ),(c_n ,d_n ) ) ((p,q),(0,1) )  = (((a_n p),(a_n q+b_n )),((c_n p),(c_n q+d_n )) )  from where we get   { ((a_(n+1) =a_n p),(a_1 =p)),((b_(n+1) =a_n q+b_n ),(b_1 =q)),((c_(n+1) =c_n p),(c_1 =0)),((d_(n+1) =c_n q+d_n ),(d_1 =0)) :}  studing each separated  for a  a_2 =a_1 p  a_3 =a_2 p=a_1 p^2   ⋮  a_n =a_1 p^(n−1) ⇒a_(n+1) =a_n p=a_1 p^n   a_1 =p⇒a_n =pp^(n−1) =p^n   for c similiar argument apply, but:  c_1 =0⇒c_n =c_1 p^(n−1) =0  for b  b_2 =a_1 q+b_1   b_3 =a_2 q+b_2 =(a_1 +a_2 )q+b_1   ⋮  b_n =(a_1 +...+a_(n−1) )q+b_1 ⇒b_(n+1) =a_n q+b_n =(a_1 +...+a_(n−1) +a_n )q+b_1   a_n =p^n ⇒Σ_(i=1) ^n a_i =p+p^2 +...+p^n =p((p^n −1)/(p−1))=((p^(n+1) −p)/(p−1))(p≠1)  b_1 =q⇒b_n =qΣ_(i=1) ^(n−1) a_i +q=q(((p^n −p)/(p−1))+1)=q((p^n −p+p−1)/(p−1))=q((p^n −1)/(p−1))  similiar for d  c_n =0⇒Σ_(i=1) ^n c_i =0  d_1 =1⇒d_n =qΣ_(i=1) ^(n−1) c_n +d_1 =1  so  A^n = ((p^n ,(q((p^n −1)/(p−1)))),(0,1) )     where p≠1  above is just the case of n=8

$${A}^{\mathrm{1}} =\begin{pmatrix}{{p}}&{{q}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix} \\ $$$${A}^{{n}} =\begin{pmatrix}{{a}_{{n}} }&{{b}_{{n}} }\\{{c}_{{n}} }&{{d}_{{n}} }\end{pmatrix} \\ $$$${A}^{{n}+\mathrm{1}} =\begin{pmatrix}{{a}_{{n}+\mathrm{1}} }&{{b}_{{n}+\mathrm{1}} }\\{{c}_{{n}+\mathrm{1}} }&{{d}_{{n}+\mathrm{1}} }\end{pmatrix} \\ $$$$={A}^{{n}} {A} \\ $$$$=\begin{pmatrix}{{a}_{{n}} }&{{b}_{{n}} }\\{{c}_{{n}} }&{{d}_{{n}} }\end{pmatrix}\begin{pmatrix}{{p}}&{{q}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix} \\ $$$$=\begin{pmatrix}{{a}_{{n}} {p}}&{{a}_{{n}} {q}+{b}_{{n}} }\\{{c}_{{n}} {p}}&{{c}_{{n}} {q}+{d}_{{n}} }\end{pmatrix} \\ $$$$\mathrm{from}\:\mathrm{where}\:\mathrm{we}\:\mathrm{get} \\ $$$$\begin{cases}{{a}_{{n}+\mathrm{1}} ={a}_{{n}} {p}}&{{a}_{\mathrm{1}} ={p}}\\{{b}_{{n}+\mathrm{1}} ={a}_{{n}} {q}+{b}_{{n}} }&{{b}_{\mathrm{1}} ={q}}\\{{c}_{{n}+\mathrm{1}} ={c}_{{n}} {p}}&{{c}_{\mathrm{1}} =\mathrm{0}}\\{{d}_{{n}+\mathrm{1}} ={c}_{{n}} {q}+{d}_{{n}} }&{{d}_{\mathrm{1}} =\mathrm{0}}\end{cases} \\ $$$$\mathrm{studing}\:\mathrm{each}\:\mathrm{separated} \\ $$$$\mathrm{for}\:\mathrm{a} \\ $$$${a}_{\mathrm{2}} ={a}_{\mathrm{1}} {p} \\ $$$${a}_{\mathrm{3}} ={a}_{\mathrm{2}} {p}={a}_{\mathrm{1}} {p}^{\mathrm{2}} \\ $$$$\vdots \\ $$$${a}_{{n}} ={a}_{\mathrm{1}} {p}^{{n}−\mathrm{1}} \Rightarrow{a}_{{n}+\mathrm{1}} ={a}_{{n}} {p}={a}_{\mathrm{1}} {p}^{{n}} \\ $$$${a}_{\mathrm{1}} ={p}\Rightarrow{a}_{{n}} ={pp}^{{n}−\mathrm{1}} ={p}^{{n}} \\ $$$$\mathrm{for}\:\mathrm{c}\:\mathrm{similiar}\:\mathrm{argument}\:\mathrm{apply},\:{but}: \\ $$$${c}_{\mathrm{1}} =\mathrm{0}\Rightarrow{c}_{{n}} ={c}_{\mathrm{1}} {p}^{{n}−\mathrm{1}} =\mathrm{0} \\ $$$$\mathrm{for}\:\mathrm{b} \\ $$$${b}_{\mathrm{2}} ={a}_{\mathrm{1}} {q}+{b}_{\mathrm{1}} \\ $$$${b}_{\mathrm{3}} ={a}_{\mathrm{2}} {q}+{b}_{\mathrm{2}} =\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} \right){q}+{b}_{\mathrm{1}} \\ $$$$\vdots \\ $$$${b}_{{n}} =\left({a}_{\mathrm{1}} +...+{a}_{{n}−\mathrm{1}} \right){q}+{b}_{\mathrm{1}} \Rightarrow{b}_{{n}+\mathrm{1}} ={a}_{{n}} {q}+{b}_{{n}} =\left({a}_{\mathrm{1}} +...+{a}_{{n}−\mathrm{1}} +{a}_{{n}} \right){q}+{b}_{\mathrm{1}} \\ $$$${a}_{{n}} ={p}^{{n}} \Rightarrow\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} ={p}+{p}^{\mathrm{2}} +...+{p}^{{n}} ={p}\frac{{p}^{{n}} −\mathrm{1}}{{p}−\mathrm{1}}=\frac{{p}^{{n}+\mathrm{1}} −{p}}{{p}−\mathrm{1}}\left({p}\neq\mathrm{1}\right) \\ $$$${b}_{\mathrm{1}} ={q}\Rightarrow{b}_{{n}} ={q}\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{a}_{{i}} +{q}={q}\left(\frac{{p}^{{n}} −{p}}{{p}−\mathrm{1}}+\mathrm{1}\right)={q}\frac{{p}^{{n}} −{p}+{p}−\mathrm{1}}{{p}−\mathrm{1}}={q}\frac{{p}^{{n}} −\mathrm{1}}{{p}−\mathrm{1}} \\ $$$$\mathrm{similiar}\:\mathrm{for}\:\mathrm{d} \\ $$$${c}_{{n}} =\mathrm{0}\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{c}_{{i}} =\mathrm{0} \\ $$$${d}_{\mathrm{1}} =\mathrm{1}\Rightarrow{d}_{{n}} ={q}\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{c}_{{n}} +{d}_{\mathrm{1}} =\mathrm{1} \\ $$$${so} \\ $$$${A}^{{n}} =\begin{pmatrix}{{p}^{{n}} }&{{q}\frac{{p}^{{n}} −\mathrm{1}}{{p}−\mathrm{1}}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix}\:\:\:\:\:\mathrm{where}\:{p}\neq\mathrm{1} \\ $$$$\mathrm{above}\:\mathrm{is}\:\mathrm{just}\:\mathrm{the}\:\mathrm{case}\:\mathrm{of}\:{n}=\mathrm{8} \\ $$

Commented by candre last updated on 05/May/18

if p=1 we get  A^n = ((1,(qn)),(0,1) )  ;)

$$\mathrm{if}\:{p}=\mathrm{1}\:\mathrm{we}\:\mathrm{get} \\ $$$${A}^{{n}} =\begin{pmatrix}{\mathrm{1}}&{{qn}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix} \\ $$$$\left.;\right) \\ $$

Commented by abdo mathsup 649 cc last updated on 05/May/18

where are you from sir candre?

$${where}\:{are}\:{you}\:{from}\:{sir}\:{candre}? \\ $$

Commented by candre last updated on 05/May/18

brazil, but why the question?

$${brazil},\:{but}\:{why}\:{the}\:{question}? \\ $$

Commented by math khazana by abdo last updated on 05/May/18

its only a simlple information sir i know that   brazil is a beautiful country with good and  generous people i am looking that you are most  interested to mathematics...i hope to visit brazil  some day....

$${its}\:{only}\:{a}\:{simlple}\:{information}\:{sir}\:{i}\:{know}\:{that}\: \\ $$$${brazil}\:{is}\:{a}\:{beautiful}\:{country}\:{with}\:{good}\:{and} \\ $$$${generous}\:{people}\:{i}\:{am}\:{looking}\:{that}\:{you}\:{are}\:{most} \\ $$$${interested}\:{to}\:{mathematics}...{i}\:{hope}\:{to}\:{visit}\:{brazil} \\ $$$${some}\:{day}.... \\ $$

Commented by Rio Mike last updated on 06/May/18

hey i live in Brazil to Sao Paolo   can i know you sir?

$${hey}\:{i}\:{live}\:{in}\:{Brazil}\:{to}\:{Sao}\:{Paolo}\: \\ $$$${can}\:{i}\:{know}\:{you}\:{sir}? \\ $$

Commented by candre last updated on 11/May/18

i does live in state of sao paulo, but not the city.

$$\mathrm{i}\:\mathrm{does}\:\mathrm{live}\:\mathrm{in}\:\mathrm{state}\:\mathrm{of}\:\mathrm{sao}\:\mathrm{paulo},\:\mathrm{but}\:\mathrm{not}\:\mathrm{the}\:\mathrm{city}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com