Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 34374 by rahul 19 last updated on 05/May/18

lim_(x→1) {1−x+[x−1]+[1−x]} = ?  [.]= greatest integer function.

$${lim}_{{x}\rightarrow\mathrm{1}} \left\{\mathrm{1}−{x}+\left[{x}−\mathrm{1}\right]+\left[\mathrm{1}−{x}\right]\right\}\:=\:? \\ $$$$\left[.\right]=\:{greatest}\:{integer}\:{function}. \\ $$

Answered by MJS last updated on 05/May/18

[x−1]=[x]−1  [1−x]=[−x]+1  1−x+[x−1]+[1−x]=1−x+[x]+[−x]  [x]+[−x]= { ((0; x∈Z)),((−1; x∈R\Z)) :}  f(x)=1−x+[x]+[−x]  f(1)=0  but  lim_(x→1) f(x)=−1  the graph of f(x) is the straight line y=−x  except for x∈Z where it′s y=1−x

$$\left[{x}−\mathrm{1}\right]=\left[{x}\right]−\mathrm{1} \\ $$$$\left[\mathrm{1}−{x}\right]=\left[−{x}\right]+\mathrm{1} \\ $$$$\mathrm{1}−{x}+\left[{x}−\mathrm{1}\right]+\left[\mathrm{1}−{x}\right]=\mathrm{1}−{x}+\left[{x}\right]+\left[−{x}\right] \\ $$$$\left[{x}\right]+\left[−{x}\right]=\begin{cases}{\mathrm{0};\:{x}\in\mathbb{Z}}\\{−\mathrm{1};\:{x}\in\mathbb{R}\backslash\mathbb{Z}}\end{cases} \\ $$$${f}\left({x}\right)=\mathrm{1}−{x}+\left[{x}\right]+\left[−{x}\right] \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{but} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}{f}\left({x}\right)=−\mathrm{1} \\ $$$$\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{straight}\:\mathrm{line}\:{y}=−{x} \\ $$$$\mathrm{except}\:\mathrm{for}\:{x}\in\mathbb{Z}\:\mathrm{where}\:\mathrm{it}'\mathrm{s}\:{y}=\mathrm{1}−{x} \\ $$

Commented by MJS last updated on 05/May/18

yes. in this case the limit from both sides is  −1 although that′s not the value of the  function at this point.

$$\mathrm{yes}.\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{from}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{is} \\ $$$$−\mathrm{1}\:\mathrm{although}\:\mathrm{that}'\mathrm{s}\:\mathrm{not}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{function}\:\mathrm{at}\:\mathrm{this}\:\mathrm{point}. \\ $$

Commented by rahul 19 last updated on 05/May/18

we are watching in the neighbourhood  of x=1 hence ans. is −1.  right ?

$${we}\:{are}\:{watching}\:{in}\:{the}\:{neighbourhood} \\ $$$${of}\:{x}=\mathrm{1}\:{hence}\:{ans}.\:{is}\:−\mathrm{1}. \\ $$$${right}\:? \\ $$

Commented by rahul 19 last updated on 05/May/18

Thank you sir.

$$\mathscr{T}{hank}\:{you}\:{sir}. \\ $$

Commented by rahul 19 last updated on 05/May/18

exactly!

$${exactly}! \\ $$

Answered by math khazana by abdo last updated on 05/May/18

let put x−1=t   lim_(x→1) 1−x +[x−1] +[1−x]  =lim_(t→0)  −t  +[t] +[−t] let put f(t)=−t +[t] +[−t]  we have f(0)=0  but   lim_(t→0^+ )    f(t) = −1   and lim_(t→0^− )   f(t)=  −1 so  limits exist at left and right  but f is not continue  at 0 .

$${let}\:{put}\:{x}−\mathrm{1}={t}\:\:\:{lim}_{{x}\rightarrow\mathrm{1}} \mathrm{1}−{x}\:+\left[{x}−\mathrm{1}\right]\:+\left[\mathrm{1}−{x}\right] \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}} \:−{t}\:\:+\left[{t}\right]\:+\left[−{t}\right]\:{let}\:{put}\:{f}\left({t}\right)=−{t}\:+\left[{t}\right]\:+\left[−{t}\right] \\ $$$${we}\:{have}\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:\:{but}\: \\ $$$${lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\:{f}\left({t}\right)\:=\:−\mathrm{1}\:\:\:{and}\:{lim}_{{t}\rightarrow\mathrm{0}^{−} } \:\:{f}\left({t}\right)=\:\:−\mathrm{1}\:{so} \\ $$$${limits}\:{exist}\:{at}\:{left}\:{and}\:{right}\:\:{but}\:{f}\:{is}\:{not}\:{continue} \\ $$$${at}\:\mathrm{0}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com