Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34421 by abdo mathsup 649 cc last updated on 06/May/18

let A  = ∫_(−∞) ^(+∞)     (dx/(x^2  −j))    with j=e^(i((2π)/3))   extract  ReA and Im(A) and calculste its values.

$${let}\:{A}\:\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−{j}}\:\:\:\:{with}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$${extract}\:\:{ReA}\:{and}\:{Im}\left({A}\right)\:{and}\:{calculste}\:{its}\:{values}. \\ $$

Commented by abdo mathsup 649 cc last updated on 07/May/18

we have A =∫_(−∞) ^(+∞)    (dx/(x^2  −(−(1/2) +i((√3)/2))))  = ∫_(−∞) ^(+∞)     (dx/(x^2  +(1/2) −i((√3)/2)))  = ∫_(−∞) ^(+∞)    ((x^2  +(1/2) +i((√3)/2))/((x^2  +(1/2))^2  +(3/4)))dx ⇒  Re(A) = ∫_(−∞) ^(+∞)   ((x^2  +(1/2))/((x^2  +(1/2))^2 +(3/4)))dx and  Im(A) = ((√3)/2) ∫_(−∞) ^(+∞)     (dx/((x^2  +(1/2))^2  +(3/4)))  let introduce  the complex function ϕ(z) =  (1/(z^2  −j))  ϕ(z) = (1/((z −(√j))(z +(√j)))) =  (1/((z − e^(i(π/3)) )(z  + e^(i(π/3)) )))  the poles of ϕ are e^(i(π/3))   , −e^(i(π/3))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,e^(i(π/3)) )  Res(ϕ,e^(i(π/3)) )=  (1/(2 e^(i(π/3)) )) =(1/2) e^(−i(π/3))   =(1/2)( cos(−(π/3)) +isin(−(π/3)))  =(1/2)( (1/2) −i((√3)/2))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (1/2)( (1/2) −i((√3)/2))  =i(π/2)  +π((√3)/2)  ⇒Re(A) = π((√3)/2)  and Im(A) = (π/2) .

$${we}\:{have}\:{A}\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−\left(−\frac{\mathrm{1}}{\mathrm{2}}\:+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} \\ $$$$=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\:−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \\ $$$$=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\:+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}}{dx}\:\Rightarrow \\ $$$${Re}\left({A}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}}{\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}{dx}\:{and} \\ $$$${Im}\left({A}\right)\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}}\:\:{let}\:{introduce} \\ $$$${the}\:{complex}\:{function}\:\varphi\left({z}\right)\:=\:\:\frac{\mathrm{1}}{{z}^{\mathrm{2}} \:−{j}} \\ $$$$\varphi\left({z}\right)\:=\:\frac{\mathrm{1}}{\left({z}\:−\sqrt{{j}}\right)\left({z}\:+\sqrt{{j}}\right)}\:=\:\:\frac{\mathrm{1}}{\left({z}\:−\:{e}^{{i}\frac{\pi}{\mathrm{3}}} \right)\left({z}\:\:+\:\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{3}}} \right)} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:{e}^{{i}\frac{\pi}{\mathrm{3}}} \:\:,\:−{e}^{{i}\frac{\pi}{\mathrm{3}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{e}^{{i}\frac{\pi}{\mathrm{3}}} \right) \\ $$$${Res}\left(\varphi,{e}^{{i}\frac{\pi}{\mathrm{3}}} \right)=\:\:\frac{\mathrm{1}}{\mathrm{2}\:{e}^{{i}\frac{\pi}{\mathrm{3}}} }\:=\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{−{i}\frac{\pi}{\mathrm{3}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\:{cos}\left(−\frac{\pi}{\mathrm{3}}\right)\:+{isin}\left(−\frac{\pi}{\mathrm{3}}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\:\frac{\mathrm{1}}{\mathrm{2}}\:−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{\mathrm{1}}{\mathrm{2}}\left(\:\frac{\mathrm{1}}{\mathrm{2}}\:−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$={i}\frac{\pi}{\mathrm{2}}\:\:+\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\Rightarrow{Re}\left({A}\right)\:=\:\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${and}\:{Im}\left({A}\right)\:=\:\frac{\pi}{\mathrm{2}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com