Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34562 by math khazana by abdo last updated on 08/May/18

find the value of  ∫_0 ^1   ((arctanx)/((1+x^2 )^2 )) dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctanx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx} \\ $$

Commented by math khazana by abdo last updated on 08/May/18

we have proved that    ∫     ((arctanx)/((1+x^2 )^2 ))dx=(1/4) (arctanx)^2  +(1/4)sin(2arctanx)+k⇒  ∫_0 ^1     ((arctanx)/((1+x^2 )^2 ))dx=[(1/4)(arctanx)^2  +(1/4)sin(2arctanx)]_0 ^1   =(1/4)((π/4))^2  +(1/4)sin((π/2)) = (π^2 /(64))  +(1/4)  .

$${we}\:{have}\:{proved}\:{that}\:\: \\ $$$$\int\:\:\:\:\:\frac{{arctanx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{4}}\:\left({arctanx}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{2}{arctanx}\right)+{k}\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{arctanx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}=\left[\frac{\mathrm{1}}{\mathrm{4}}\left({arctanx}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{2}{arctanx}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\pi}{\mathrm{4}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\frac{\pi}{\mathrm{2}}\right)\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{64}}\:\:+\frac{\mathrm{1}}{\mathrm{4}}\:\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 08/May/18

t=tan^(−1) x,(dt/dx)=(1/(1+x^2 ))  =∫_0 ^(Π/4) (t/((1+tan^2 t)^2 )).(1+tan^2 t)dt  =∫_0 ^(Π/4) t.cos^2 tdt  =∫_0 ^(Π/4) t(1+cos2t)/2dt  =(1/2)∫_0 ^(Π/4) t dt +(1/2)∫_0 ^(Π/4) tcos2t dt  =(1/2)∣(t^2 /2)∣_0 ^(Π/4) +I_2   =(1/4).(Π^2 /(16))=(Π^2 /(64))  I_2 =(1/2)∫_0 ^(Π/4) tcos2t dt  (1/2)∣((tsin2t)/2)∣_0 ^(Π/4) −I_3    ∫tcos2t dt  =t((sin2t)/2)−∫{(dt/(dt )).∫cos2t dt}dt  =t((sin2t)/2)−∫((sin2t)/2)dt  =t((sin2t)/2)+((cos2t)/4)  so I_3 =∣((tsin2t)/2)+((cos2t)/4)∣_0 ^(Π/4)

$${t}={tan}^{−\mathrm{1}} {x},\frac{{dt}}{{dx}}=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\underset{\mathrm{0}} {\overset{\Pi/\mathrm{4}} {\int}}\frac{{t}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }.\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right){dt} \\ $$$$=\underset{\mathrm{0}} {\overset{\Pi/\mathrm{4}} {\int}}{t}.{cos}^{\mathrm{2}} {tdt} \\ $$$$=\underset{\mathrm{0}} {\overset{\Pi/\mathrm{4}} {\int}}{t}\left(\mathrm{1}+{cos}\mathrm{2}{t}\right)/\mathrm{2}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\Pi/\mathrm{4}} {\int}}{t}\:{dt}\:+\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\Pi/\mathrm{4}} {\int}}{tcos}\mathrm{2}{t}\:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mid\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\mid_{\mathrm{0}} ^{\Pi/\mathrm{4}} +{I}_{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}.\frac{\prod^{\mathrm{2}} }{\mathrm{16}}=\frac{\prod^{\mathrm{2}} }{\mathrm{64}} \\ $$$${I}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\Pi/\mathrm{4}} {tcos}\mathrm{2}{t}\:{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mid\frac{{tsin}\mathrm{2}{t}}{\mathrm{2}}\mid_{\mathrm{0}} ^{\Pi/\mathrm{4}} −{I}_{\mathrm{3}} \\ $$$$\:\int{tcos}\mathrm{2}{t}\:{dt} \\ $$$$={t}\frac{{sin}\mathrm{2}{t}}{\mathrm{2}}−\int\left\{\frac{{dt}}{{dt}\:}.\int{cos}\mathrm{2}{t}\:{dt}\right\}{dt} \\ $$$$={t}\frac{{sin}\mathrm{2}{t}}{\mathrm{2}}−\int\frac{{sin}\mathrm{2}{t}}{\mathrm{2}}{dt} \\ $$$$={t}\frac{{sin}\mathrm{2}{t}}{\mathrm{2}}+\frac{{cos}\mathrm{2}{t}}{\mathrm{4}} \\ $$$${so}\:{I}_{\mathrm{3}} =\mid\frac{{tsin}\mathrm{2}{t}}{\mathrm{2}}+\frac{{cos}\mathrm{2}{t}}{\mathrm{4}}\mid_{\mathrm{0}} ^{\Pi/\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com