Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34635 by abdo mathsup 649 cc last updated on 09/May/18

calculate A(α)  = ∫_0 ^1  ln(1+αix)dx  2) calculate ∫_0 ^1  ln(1+ix) dx    (i^2  =−1)

calculateA(α)=01ln(1+αix)dx2)calculate01ln(1+ix)dx(i2=1)

Commented by tanmay.chaudhury50@gmail.com last updated on 09/May/18

Commented by abdo mathsup 649 cc last updated on 10/May/18

we have  1+i(αx) =(√(1+α^2 x^2 )) ( (1/(√(1+α^2 x^2 ))) +i((αx)/(√(1+α^2 x^2 ))))  =(√(1+α^2 x^2 ))  e^(iθ)    /cosθ =(1/(√(1+α^2 x^2 ))) and  sinθ = ((αx)/(√(1+α^2 x^2 ))) ⇒ tanθ =αx ⇒θ =arctan(αx)  ln(1 +iαx)=(1/2)ln(1+α^2 x^2 ) +i arctan(αx) ⇒  A(α) = (1/2) ∫_0 ^1  ln(1+α^2 x^2 )dx  +i ∫_0 ^1  arctan(αx)dx  =f(α) +i g(α)  2f^′ (α) =  ∫_0 ^1   ((2αx^2 )/(1+α^2 x^2 ))dx = (2/α) ∫_0 ^1   ((1+α^2 x^2  −1)/(1+α^2 x^2 ))dx  = (2/α)  −(2/α) ∫_0 ^1    (dx/(1+α^2 x^2 ))  =_(αx =u)   (2/α)  −(2/α)  ∫_0 ^α     (1/(1+u^2 )) (du/α)  =(2/α)  −(2/α^2 ) arctan(α) ⇒ f^′ (α) = (1/α) −((arctan(α))/α^2 )  ⇒ f(α)= ln∣α∣ −  ∫^α    ((arcrctant)/t^2 ) dt  by parts   ∫     ((arctant)/t^2 )dt = −(1/t) arctant −∫ ((−1)/t)   (dt/(1+t^2 ))  =−(1/t)arctant   + ∫      (dt/(t(1+t^2 )))  =−((arctant)/t) + ∫  ((1/t) −(t/(1+t^2 )))dt  =−((arctant)/t)  +ln∣t∣  −(1/2) ln(1+t^2 ) ⇒  f(α)= ((arctan(α))/α)  +(1/2)ln(1+α^2 ) +c  c =lim_(α→.0) (f(α)−((arctan(α))/α) −(1/2)ln(1+α^2 ))=−1  f(α) =((arctan(α))/α)  +(1/2)ln(1+α^2 ) −1  g(α) = ∫_0 ^1   arctan(αx)dx  =_(αx =t)   ∫_0 ^α     arctant (dt/α)  =(1/α) ∫_0 ^α   arctant dt  = (1/α){   [t arctant]_0 ^α   −∫_0 ^α   (t/(1+t^2 ))dt}  = (1/α){  α arctan(α) −(1/2)ln(1+α^2 )} ⇒  A(α) = ((arctan(α))/α)  +(1/2)ln(1+α^2 ) −1  i{ arctan(α) −(1/(2α))ln(1+α^2 )}

wehave1+i(αx)=1+α2x2(11+α2x2+iαx1+α2x2)=1+α2x2eiθ/cosθ=11+α2x2andsinθ=αx1+α2x2tanθ=αxθ=arctan(αx)ln(1+iαx)=12ln(1+α2x2)+iarctan(αx)A(α)=1201ln(1+α2x2)dx+i01arctan(αx)dx=f(α)+ig(α)2f(α)=012αx21+α2x2dx=2α011+α2x211+α2x2dx=2α2α01dx1+α2x2=αx=u2α2α0α11+u2duα=2α2α2arctan(α)f(α)=1αarctan(α)α2f(α)=lnααarcrctantt2dtbypartsarctantt2dt=1tarctant1tdt1+t2=1tarctant+dtt(1+t2)=arctantt+(1tt1+t2)dt=arctantt+lnt12ln(1+t2)f(α)=arctan(α)α+12ln(1+α2)+cc=limα.0(f(α)arctan(α)α12ln(1+α2))=1f(α)=arctan(α)α+12ln(1+α2)1g(α)=01arctan(αx)dx=αx=t0αarctantdtα=1α0αarctantdt=1α{[tarctant]0α0αt1+t2dt}=1α{αarctan(α)12ln(1+α2)}A(α)=arctan(α)α+12ln(1+α2)1i{arctan(α)12αln(1+α2)}

Commented by abdo mathsup 649 cc last updated on 10/May/18

2) ∫_0 ^1  ln(1+ix)dx =A(1)  =(π/4) +(1/2)ln(2) +i( (π/4) −(1/2) ln(2)) .

2)01ln(1+ix)dx=A(1)=π4+12ln(2)+i(π412ln(2)).

Commented by abdo mathsup 649 cc last updated on 10/May/18

A(1) = (π/4) +(1/2)ln(2) −1 +i( (π/4) −(1/2) ln(2)) .

A(1)=π4+12ln(2)1+i(π412ln(2)).

Answered by tanmay.chaudhury50@gmail.com last updated on 09/May/18

∫_0 ^1 ln(1+iαx)=∫_0 ^1 (1/2)ln(1^2 +α^2 x^2 )+itan^(−1) (((αx)/1))dx  =I_1 +I_2   I_1 =(1/2)∫_0 ^1 (α^2 x^2 −((α^4 x^4 )/2)+((α^6 x^6 )/3)−((α^8 x^8 )/4)+....  dx  using ln(1+x)=x−(x^2 /2)+(x^3 /3)−  =(1/2)∣((α^2 x^3 )/3)−((α^4 x^5 )/(2×5))+((α^6 x^7 )/(3×7))−((α^8 x^9 )/(4×9)).....∣_0 ^1   =(1/2)((α^2 /3)−(α^4 /(10))+(α^6 /(21))−(α^8 /(36))...)  I_2 =∫_0 ^1 itan^(−1) (αx) dx

01ln(1+iαx)=0112ln(12+α2x2)+itan1(αx1)dx=I1+I2I1=1201(α2x2α4x42+α6x63α8x84+....dxusingln(1+x)=xx22+x33=12α2x33α4x52×5+α6x73×7α8x94×9.....10=12(α23α410+α621α836...)I2=01itan1(αx)dx

Commented by tanmay.chaudhury50@gmail.com last updated on 09/May/18

Answered by tanmay.chaudhury50@gmail.com last updated on 09/May/18

I_2 =∫_0 ^1 itan^(−1) αx dx  =i∫_0 ^1 (αx−((α^3 x^3 )/3)+((α^5 x^5 )/5)....)dx  =i∣(((αx^2 )/2)−((α^3 x^4 )/(3×4))+((α^5 x^6 )/(5×6))....)∣_0 ^1   =i((α/2)−(α^3 /(12))+(α^5 /(30))...)

I2=01itan1αxdx=i01(αxα3x33+α5x55....)dx=i(αx22α3x43×4+α5x65×6....)01=i(α2α312+α530...)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com