Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 3464 by Rasheed Soomro last updated on 13/Dec/15

If  a,b,c,d are in G.P., prove that  a^2 −b^2 ,b^2 −c^2 ,c^2 −d^2  are also in G.P.

$$\mathcal{I}{f}\:\:{a},{b},{c},{d}\:{are}\:{in}\:{G}.{P}.,\:{prove}\:{that} \\ $$$${a}^{\mathrm{2}} −{b}^{\mathrm{2}} ,{b}^{\mathrm{2}} −{c}^{\mathrm{2}} ,{c}^{\mathrm{2}} −{d}^{\mathrm{2}} \:{are}\:{also}\:{in}\:{G}.{P}. \\ $$

Answered by Yozzii last updated on 13/Dec/15

I assume that a,b,c,d∈C−{0},  a,b,c,d form a G.P in this sequence  and a≠b≠c≠d. If r is the common  ratio of this G.P  ⇒ (b/a)=(c/b)=(d/c)=r ⇒ ac=b^2  and bd=c^2 .  Let ψ=((b^2 −c^2 )/(a^2 −b^2 )).   ψ=((b^2 −c^2 )/(a^2 −b^2 ))=((b^2 −bd)/(a^2 −ac))=((b(b−d))/(a(a−c)))=((c(b−d))/(b(a−c)))  ψ=((d(b−d))/(c(a−c)))=((db−d^2 )/(ac−c^2 ))=((c^2 −d^2 )/(b^2 −c^2 ))  Since ((b^2 −c^2 )/(a^2 −b^2 ))=((c^2 −d^2 )/(b^2 −c^2 ))=ψ=constant,  a^2 −b^2 , b^2 −c^2 , c^2 −d^2  form a G.P  in that  sequence.  {C is the most general set of numbers  in current existence containing all  conceivable numbers. This is why   C was chosen as the domain for  a,b,c and d. If any one of a,b,c or d=0  we have contradictions on r.}

$${I}\:{assume}\:{that}\:{a},{b},{c},{d}\in\mathbb{C}−\left\{\mathrm{0}\right\}, \\ $$$${a},{b},{c},{d}\:{form}\:{a}\:{G}.{P}\:{in}\:{this}\:{sequence} \\ $$$${and}\:{a}\neq{b}\neq{c}\neq{d}.\:{If}\:{r}\:{is}\:{the}\:{common} \\ $$$${ratio}\:{of}\:{this}\:{G}.{P} \\ $$$$\Rightarrow\:\frac{{b}}{{a}}=\frac{{c}}{{b}}=\frac{{d}}{{c}}={r}\:\Rightarrow\:{ac}={b}^{\mathrm{2}} \:{and}\:{bd}={c}^{\mathrm{2}} . \\ $$$${Let}\:\psi=\frac{{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }.\: \\ $$$$\psi=\frac{{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }=\frac{{b}^{\mathrm{2}} −{bd}}{{a}^{\mathrm{2}} −{ac}}=\frac{{b}\left({b}−{d}\right)}{{a}\left({a}−{c}\right)}=\frac{{c}\left({b}−{d}\right)}{{b}\left({a}−{c}\right)} \\ $$$$\psi=\frac{{d}\left({b}−{d}\right)}{{c}\left({a}−{c}\right)}=\frac{{db}−{d}^{\mathrm{2}} }{{ac}−{c}^{\mathrm{2}} }=\frac{{c}^{\mathrm{2}} −{d}^{\mathrm{2}} }{{b}^{\mathrm{2}} −{c}^{\mathrm{2}} } \\ $$$${Since}\:\frac{{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }=\frac{{c}^{\mathrm{2}} −{d}^{\mathrm{2}} }{{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }=\psi={constant}, \\ $$$${a}^{\mathrm{2}} −{b}^{\mathrm{2}} ,\:{b}^{\mathrm{2}} −{c}^{\mathrm{2}} ,\:{c}^{\mathrm{2}} −{d}^{\mathrm{2}} \:{form}\:{a}\:{G}.{P}\:\:{in}\:{that} \\ $$$${sequence}. \\ $$$$\left\{\mathbb{C}\:{is}\:{the}\:{most}\:{general}\:{set}\:{of}\:{numbers}\right. \\ $$$${in}\:{current}\:{existence}\:{containing}\:{all} \\ $$$${conceivable}\:{numbers}.\:{This}\:{is}\:{why}\: \\ $$$$\mathbb{C}\:{was}\:{chosen}\:{as}\:{the}\:{domain}\:{for} \\ $$$${a},{b},{c}\:{and}\:{d}.\:{If}\:{any}\:{one}\:{of}\:{a},{b},{c}\:{or}\:{d}=\mathrm{0} \\ $$$$\left.{we}\:{have}\:{contradictions}\:{on}\:{r}.\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com