All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 34646 by JOHNMASANJA last updated on 09/May/18
showthat2tan−12+tan−13=Π+tan−113
Answered by ajfour last updated on 09/May/18
let2θ+ϕ=2tan−12+tan−13⇒tan(2θ+ϕ)=tan2θ+tanϕ1−tan2θtanϕ=(2tanθ1−tan2θ)+tanϕ1−(2tanθ1−tan2θ)tanϕ=41−4+31−(41−4)3=515=132θ+ϕ=2tan−12+tan−13=π+tan−113.
Commented by JOHNMASANJA last updated on 09/May/18
ididunderstandhowdoesπcamefrom
Terms of Service
Privacy Policy
Contact: info@tinkutara.com