All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 34647 by JOHNMASANJA last updated on 09/May/18
ifxsin3θ+ycos3θ=sinθcosθandxsinθ−ycosθ=0provethatx2+y2=1
Answered by tanmay.chaudhury50@gmail.com last updated on 09/May/18
xsinθ=ycosθxcosθ=ysinθ=k(assumed)x=kcosθ,y=ksinθputtinginfirstequationkcosθsin3θ+ksinθcos3θ=sinθcosθksinθcosθ(sin2θ+cos2θ)=sinθcosθsok=1hencex2+y2=cos2θ+sin2θ=1
Answered by ajfour last updated on 09/May/18
xsinθ=ycosθ⇒xsinθ(sin2θ)+ycosθ(cos2θ)=xsinθcosθxorxsin2θ+xcos2θ=cosθ⇒x=cosθsimilarlyysin2θ+ycos2θ=sinθ⇒y=sinθhencex2+y2=1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com