Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 34647 by JOHNMASANJA last updated on 09/May/18

if   xsin^3 θ + ycos^3 θ=sinθcosθ  and xsinθ −ycosθ=0  prove that x^2  + y^2 =1

ifxsin3θ+ycos3θ=sinθcosθandxsinθycosθ=0provethatx2+y2=1

Answered by tanmay.chaudhury50@gmail.com last updated on 09/May/18

xsinθ=ycosθ  (x/(cosθ))=(y/(sinθ))=k(assumed)  x=kcosθ ,y=ksinθ  putting in first equation    kcosθsin^3 θ+ksinθcos^3 θ=sinθcosθ  ksinθcosθ(sin^2 θ+cos^2 θ)=sinθcosθ  so k=1  hence x^2 +y^2   =cos^2 θ+sin^2 θ  =1

xsinθ=ycosθxcosθ=ysinθ=k(assumed)x=kcosθ,y=ksinθputtinginfirstequationkcosθsin3θ+ksinθcos3θ=sinθcosθksinθcosθ(sin2θ+cos2θ)=sinθcosθsok=1hencex2+y2=cos2θ+sin2θ=1

Answered by ajfour last updated on 09/May/18

xsin θ=ycos θ  ⇒   xsin θ(sin^2 θ)+ycos θ(cos^2 θ)                          = ((xsin θcos θ)/x)  or    xsin^2 θ+xcos^2 θ=cos θ  ⇒      x=cos θ     similarly           ysin^2 θ+ycos^2 θ=sin θ  ⇒      y=sin θ       hence   x^2 +y^2  = 1  .

xsinθ=ycosθxsinθ(sin2θ)+ycosθ(cos2θ)=xsinθcosθxorxsin2θ+xcos2θ=cosθx=cosθsimilarlyysin2θ+ycos2θ=sinθy=sinθhencex2+y2=1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com