All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 34692 by math khazana by abdo last updated on 09/May/18
findlimn→+∞1n3∑k=1nk2sin(kπn)
Commented by math khazana by abdo last updated on 11/May/18
letputSn=1n3∑k=1nk2sin(kπn)Sn=1n∑k=1n(kn)2sin(kπn)→n→+∞∫01x2sinxdxletintegratebypartsI=∫01x2sinxdx=[−x2cosx]01+∫012xcosxdx=−cos(1)+2{[xsinx]01−∫01sinxdx}=−cos(1)+2{sin(1)+[cosx]01}=−cos(1)+2{sin(1)+cos(1)−1}=2sin(1)+cos(1)−2limn→+∞Sn=2sin(1)+cos(1)−2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com