Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 34698 by abdo imad last updated on 10/May/18

let f(x)=e^x  sinx  .developp f at integr serie.

$${let}\:{f}\left({x}\right)={e}^{{x}} \:{sinx}\:\:.{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Commented by abdo mathsup 649 cc last updated on 10/May/18

f(x)=Im( e^x e^(ix) ) = Im( e^((1+i)x) ) but  e^((1+i)x)   = Σ_(n=0) ^∞   (((1+i)^n )/(n!)) x^n   = Σ_(n=0) ^∞  (({(√2) e^(i(π/4)) }^n )/(n!)) x^n     =Σ_(n=0) ^∞   ((((√2))^n  e^(in(π/4)) )/(n!)) x^n  ⇒  f(x)= Σ_(n=0) ^∞   ((((√2))^n )/(n!)) sin(n(π/4)) x^n  .

$${f}\left({x}\right)={Im}\left(\:{e}^{{x}} {e}^{{ix}} \right)\:=\:{Im}\left(\:{e}^{\left(\mathrm{1}+{i}\right){x}} \right)\:{but} \\ $$$${e}^{\left(\mathrm{1}+{i}\right){x}} \:\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{1}+{i}\right)^{{n}} }{{n}!}\:{x}^{{n}} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left\{\sqrt{\mathrm{2}}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \right\}^{{n}} }{{n}!}\:{x}^{{n}} \:\: \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(\sqrt{\mathrm{2}}\right)^{{n}} \:{e}^{{in}\frac{\pi}{\mathrm{4}}} }{{n}!}\:{x}^{{n}} \:\Rightarrow \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(\sqrt{\mathrm{2}}\right)^{{n}} }{{n}!}\:{sin}\left({n}\frac{\pi}{\mathrm{4}}\right)\:{x}^{{n}} \:. \\ $$$$ \\ $$

Commented by abdo mathsup 649 cc last updated on 10/May/18

another method  we have?f(x)= Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n     but leibniz  formula give f^((n)) (x)= Σ_(k=0) ^n  C_n ^k   (sinx)^((k))  (e^x )^((n−k))   = Σ_(k=0) ^n   C_n ^k   sin(x+k(π/2)) e^x  ⇒  f^((n)) (0) = Σ_(k=0) ^n  C_n ^k   sin( k(π/2))⇒  f(x) = Σ_(n=0) ^∞   (1/(n!))( Σ_(k=0) ^n  C_n ^k  sin(k(π/2))) x^n   .

$${another}\:{method} \\ $$$${we}\:{have}?{f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:{x}^{{n}} \:\:\:\:{but}\:{leibniz} \\ $$$${formula}\:{give}\:{f}^{\left({n}\right)} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:\left({sinx}\right)^{\left({k}\right)} \:\left({e}^{{x}} \right)^{\left({n}−{k}\right)} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\:{sin}\left({x}+{k}\frac{\pi}{\mathrm{2}}\right)\:{e}^{{x}} \:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:{sin}\left(\:{k}\frac{\pi}{\mathrm{2}}\right)\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}!}\left(\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{sin}\left({k}\frac{\pi}{\mathrm{2}}\right)\right)\:{x}^{{n}} \:\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 10/May/18

p=e^x cosx   q=e^x sinx  p+iq=e^x cosx+ie^x sinx  =e^x .e^(ix)   =e^(x(1+i))    =x(1+i)+((x^2 .(1+i)^2 )/(2!))+((x^3 (1+i)^3 )/(3!))+((x^4 (1+i)^4 )/(4!))+...  =(x+ix)+(((i2x^2 ))/(2!))+x^3 (1+3i−3−i)/3! +x^4 (((−4))/(4−!))+..  so e^x sinx=  x+((2x^2 )/(2!))+x^3 (2/(3!))+....

$${p}={e}^{{x}} {cosx}\:\:\:{q}={e}^{{x}} {sinx} \\ $$$${p}+{iq}={e}^{{x}} {cosx}+{ie}^{{x}} {sinx} \\ $$$$={e}^{{x}} .{e}^{{ix}} \\ $$$$={e}^{{x}\left(\mathrm{1}+{i}\right)} \: \\ $$$$={x}\left(\mathrm{1}+{i}\right)+\frac{{x}^{\mathrm{2}} .\left(\mathrm{1}+{i}\right)^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} \left(\mathrm{1}+{i}\right)^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}} \left(\mathrm{1}+{i}\right)^{\mathrm{4}} }{\mathrm{4}!}+... \\ $$$$=\left({x}+{ix}\right)+\frac{\left({i}\mathrm{2}{x}^{\mathrm{2}} \right)}{\mathrm{2}!}+{x}^{\mathrm{3}} \left(\mathrm{1}+\mathrm{3}{i}−\mathrm{3}−{i}\right)/\mathrm{3}!\:+{x}^{\mathrm{4}} \frac{\left(−\mathrm{4}\right)}{\mathrm{4}−!}+.. \\ $$$${so}\:{e}^{{x}} {sinx}= \\ $$$${x}+\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{2}!}+{x}^{\mathrm{3}} \frac{\mathrm{2}}{\mathrm{3}!}+.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com