Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34714 by abdo mathsup 649 cc last updated on 10/May/18

calculate ∫∫_(x^2  +2y^2  ≤1) (x^2  −y^2 )dxdy

calculatex2+2y21(x2y2)dxdy

Commented by math khazana by abdo last updated on 10/May/18

let consider the diffeomorphism  (r,θ)→(x,y)=(rcosθ,(r/(√2))sinθ)=(ϕ_1 (r,θ),ϕ_2 (r,θ))  M_j =  ((((∂ϕ_1 /∂r)             (∂ϕ_1 /∂θ))),(((∂ϕ_2 /∂r)                (∂ϕ_2 /∂θ))) )  =  (((cosθ           −rsinθ)),((((sinθ)/(√2))               (r/(√2))cosθ)) )      and det(M_j )=  (r/(√2)) cos^2 θ +(r/(√2)) sin^2 θ = (1/(√2)) r  I  = ∫∫_(0≤r≤1  ,   −π≤θ≤π) ( r^2 cos^2 θ −(r^2 /2) sin^2 θ)(r/(√2))drdθ  I = (1/(√2)) ∫_0 ^1  r^3 dr ∫_(−π) ^π  cos^2 θ dθ  −(1/(2(√2))) ∫_0 ^1  r^3 dr ∫_(−π) ^π  sin^2 θdθ  = (1/(4(√2))) ∫_(−π) ^π  cos^2 θ dθ  −(1/(8(√2))) ∫_(−π) ^π   sin^2 θ dθ  but  ∫_(−π) ^π  cos^2 θ dθ = 2 ∫_0 ^π   ((1+cos(2θ))/2)dθ   = ∫_0 ^π ( 1+cos(2θ))dθ = π  ∫_(−π) ^π  sin^2 θdθ = 2 ∫_0 ^π  ((1−cos(2θ))/2)dθ   = ∫_0 ^π  (1−cos(2θ))dθ = π ⇒  I = (π/(4(√2)))  −(π/(8(√2)))  = ((2π−π)/(8(√2))) = (π/(8(√2)))  I  = (π/(8(√2))) .

letconsiderthediffeomorphism(r,θ)(x,y)=(rcosθ,r2sinθ)=(φ1(r,θ),φ2(r,θ))Mj=(φ1rφ1θφ2rφ2θ)=(cosθrsinθsinθ2r2cosθ)anddet(Mj)=r2cos2θ+r2sin2θ=12rI=0r1,πθπ(r2cos2θr22sin2θ)r2drdθI=1201r3drππcos2θdθ12201r3drππsin2θdθ=142ππcos2θdθ182ππsin2θdθbutππcos2θdθ=20π1+cos(2θ)2dθ=0π(1+cos(2θ))dθ=πππsin2θdθ=20π1cos(2θ)2dθ=0π(1cos(2θ))dθ=πI=π42π82=2ππ82=π82I=π82.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com