Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34714 by abdo mathsup 649 cc last updated on 10/May/18

calculate ∫∫_(x^2  +2y^2  ≤1) (x^2  −y^2 )dxdy

$${calculate}\:\int\int_{{x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \:\leqslant\mathrm{1}} \left({x}^{\mathrm{2}} \:−{y}^{\mathrm{2}} \right){dxdy} \\ $$

Commented by math khazana by abdo last updated on 10/May/18

let consider the diffeomorphism  (r,θ)→(x,y)=(rcosθ,(r/(√2))sinθ)=(ϕ_1 (r,θ),ϕ_2 (r,θ))  M_j =  ((((∂ϕ_1 /∂r)             (∂ϕ_1 /∂θ))),(((∂ϕ_2 /∂r)                (∂ϕ_2 /∂θ))) )  =  (((cosθ           −rsinθ)),((((sinθ)/(√2))               (r/(√2))cosθ)) )      and det(M_j )=  (r/(√2)) cos^2 θ +(r/(√2)) sin^2 θ = (1/(√2)) r  I  = ∫∫_(0≤r≤1  ,   −π≤θ≤π) ( r^2 cos^2 θ −(r^2 /2) sin^2 θ)(r/(√2))drdθ  I = (1/(√2)) ∫_0 ^1  r^3 dr ∫_(−π) ^π  cos^2 θ dθ  −(1/(2(√2))) ∫_0 ^1  r^3 dr ∫_(−π) ^π  sin^2 θdθ  = (1/(4(√2))) ∫_(−π) ^π  cos^2 θ dθ  −(1/(8(√2))) ∫_(−π) ^π   sin^2 θ dθ  but  ∫_(−π) ^π  cos^2 θ dθ = 2 ∫_0 ^π   ((1+cos(2θ))/2)dθ   = ∫_0 ^π ( 1+cos(2θ))dθ = π  ∫_(−π) ^π  sin^2 θdθ = 2 ∫_0 ^π  ((1−cos(2θ))/2)dθ   = ∫_0 ^π  (1−cos(2θ))dθ = π ⇒  I = (π/(4(√2)))  −(π/(8(√2)))  = ((2π−π)/(8(√2))) = (π/(8(√2)))  I  = (π/(8(√2))) .

$${let}\:{consider}\:{the}\:{diffeomorphism} \\ $$$$\left({r},\theta\right)\rightarrow\left({x},{y}\right)=\left({rcos}\theta,\frac{{r}}{\sqrt{\mathrm{2}}}{sin}\theta\right)=\left(\varphi_{\mathrm{1}} \left({r},\theta\right),\varphi_{\mathrm{2}} \left({r},\theta\right)\right) \\ $$$${M}_{{j}} =\:\begin{pmatrix}{\frac{\partial\varphi_{\mathrm{1}} }{\partial{r}}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{1}} }{\partial\theta}}\\{\frac{\partial\varphi_{\mathrm{2}} }{\partial{r}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{2}} }{\partial\theta}}\end{pmatrix} \\ $$$$=\:\begin{pmatrix}{{cos}\theta\:\:\:\:\:\:\:\:\:\:\:−{rsin}\theta}\\{\frac{{sin}\theta}{\sqrt{\mathrm{2}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{r}}{\sqrt{\mathrm{2}}}{cos}\theta}\end{pmatrix}\:\:\:\:\:\:{and}\:{det}\left({M}_{{j}} \right)= \\ $$$$\frac{{r}}{\sqrt{\mathrm{2}}}\:{cos}^{\mathrm{2}} \theta\:+\frac{{r}}{\sqrt{\mathrm{2}}}\:{sin}^{\mathrm{2}} \theta\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:{r} \\ $$$${I}\:\:=\:\int\int_{\mathrm{0}\leqslant{r}\leqslant\mathrm{1}\:\:,\:\:\:−\pi\leqslant\theta\leqslant\pi} \left(\:{r}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta\:−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\:{sin}^{\mathrm{2}} \theta\right)\frac{{r}}{\sqrt{\mathrm{2}}}{drd}\theta \\ $$$${I}\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{r}^{\mathrm{3}} {dr}\:\int_{−\pi} ^{\pi} \:{cos}^{\mathrm{2}} \theta\:{d}\theta\:\:−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{r}^{\mathrm{3}} {dr}\:\int_{−\pi} ^{\pi} \:{sin}^{\mathrm{2}} \theta{d}\theta \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\:\int_{−\pi} ^{\pi} \:{cos}^{\mathrm{2}} \theta\:{d}\theta\:\:−\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}}\:\int_{−\pi} ^{\pi} \:\:{sin}^{\mathrm{2}} \theta\:{d}\theta\:\:{but} \\ $$$$\int_{−\pi} ^{\pi} \:{cos}^{\mathrm{2}} \theta\:{d}\theta\:=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}{d}\theta\: \\ $$$$=\:\int_{\mathrm{0}} ^{\pi} \left(\:\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)\right){d}\theta\:=\:\pi \\ $$$$\int_{−\pi} ^{\pi} \:{sin}^{\mathrm{2}} \theta{d}\theta\:=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{1}−{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}{d}\theta\: \\ $$$$=\:\int_{\mathrm{0}} ^{\pi} \:\left(\mathrm{1}−{cos}\left(\mathrm{2}\theta\right)\right){d}\theta\:=\:\pi\:\Rightarrow \\ $$$${I}\:=\:\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}}\:\:−\frac{\pi}{\mathrm{8}\sqrt{\mathrm{2}}}\:\:=\:\frac{\mathrm{2}\pi−\pi}{\mathrm{8}\sqrt{\mathrm{2}}}\:=\:\frac{\pi}{\mathrm{8}\sqrt{\mathrm{2}}} \\ $$$${I}\:\:=\:\frac{\pi}{\mathrm{8}\sqrt{\mathrm{2}}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com