All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 34717 by abdo mathsup 649 cc last updated on 10/May/18
letIn=∫∫[1n,n]2xydxdy2+x2+y2findlimInwhenn→+∞.
Commented by prof Abdo imad last updated on 11/May/18
letconsiderthediffeomorphism(r,θ)→(x,y)=(rcosθ,rsinθ)wehave1n⩽x⩽n,1n⩽y⩽n⇒2n2⩽x2+y2⩽2n2⇒2n⩽r⩽2nIn=∫∫2n⩽r⩽2n,0⩽θ⩽π2rcosθsinθ2+r2rdrdθ=∫2n2nr22+r2dr∫0π2cosθsinθdθbut∫2nn2r22+r2dr=∫2nn22+r2−22+r2dr=n2−2n−2∫2nn2dr2+r2(r=u2)=n2−2n−∫1nn2du2(1+u2)=n2−2n−22(arctan(n)−arctan(1n))=n2−2n−22(2arctan(n)−π2)∫0π2cosθsinθdθ=12∫0π2sin(2θ)dθ(2θ=t)=12∫0πsintdt2=122∫0πsintdtch.sint=xgivesint=x2⇒t=arcsin(x2)∫0πsintdt=∫0π2sintdt+∫π2πsintdt=∫01x2x1−x4dx=∫012x21−x4dx....butn2−2n−22{2arctan(n)−π2}∼n2−22π2∼n2⇒limn→+∞In=+∞
Terms of Service
Privacy Policy
Contact: info@tinkutara.com