Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34717 by abdo mathsup 649 cc last updated on 10/May/18

let I_n = ∫∫_([(1/n),n]^2 )      (((√(xy)) dxdy)/(2 +x^2  +y^2 ))  find lim I_n  when n→+∞.

letIn=[1n,n]2xydxdy2+x2+y2findlimInwhenn+.

Commented by prof Abdo imad last updated on 11/May/18

let consider the diffeomorphism  (r,θ)→(x,y) =(r cosθ,r sinθ)  we have  (1/n)≤x^ ≤n  ,(1/n)≤ y≤n ⇒ (2/n^2 )≤x^2  +y^2 ≤ 2n^2  ⇒  ((√2)/n)≤r≤(√2) n  I_n  = ∫∫_(((√2)/n)≤r≤(√2) n   ,  0≤θ≤(π/2))     ((r(√(cosθsinθ)))/(2+r^2 )) r dr dθ  = ∫_(((√2)/n) ) ^((√2) n)    (r^2 /(2+r^2 )) dr  ∫_0 ^(π/2)  (√(cosθ sinθ)) dθ  but  ∫_((√2)/n) ^(n(√2))   (r^2 /(2+r^2 ))dr = ∫_((√2)/n) ^(n(√2))   ((2+r^2  −2)/(2+r^2 )) dr  =n(√2)  −((√2)/n)    −2 ∫_((√2)/n) ^(n(√2))     (dr/(2+r^2 ))    ( r=u(√2))  =n(√2)  −((√2)/n) −  ∫_(1/n) ^n     (((√2)  du)/(2(1+u^2 )))  =n(√2)  −((√2)/n) −((√2)/2)  (arctan(n) −arctan((1/n)))  =n(√2)  −((√2)/n) −((√2)/2)( 2arctan(n) −(π/2))  ∫_0 ^(π/2) (√(cosθsinθ)) dθ = (1/(√2)) ∫_0 ^(π/2)   (√(sin(2θ))) dθ  (2θ=t)  =(1/(√2)) ∫_0 ^π   (√(sint))   (dt/2) = (1/(2(√2))) ∫_0 ^π  (√(sint))   dt  ch. (√(sint_  )) =x  give sint =x^2  ⇒ t =arcsin(x^2 )  ∫_0 ^π (√(sint)) dt = ∫_0 ^(π/2)  (√(sint)) dt  + ∫_(π/2) ^π  (√(sint))dt  = ∫_0 ^1    x   ((2x)/(√(1−x^4 ))) dx =  ∫_0 ^1   ((2x^2 )/(√(1−x^4 ))) dx....  but n(√2) −((√2)/n)  −((√2)/2){ 2arctan(n)−(π/2)}  ∼n(√2) −((√2)/2) (π/2) ∼ n(√2)  ⇒ lim_(n→+∞)  I_n =+∞

letconsiderthediffeomorphism(r,θ)(x,y)=(rcosθ,rsinθ)wehave1nxn,1nyn2n2x2+y22n22nr2nIn=2nr2n,0θπ2rcosθsinθ2+r2rdrdθ=2n2nr22+r2dr0π2cosθsinθdθbut2nn2r22+r2dr=2nn22+r222+r2dr=n22n22nn2dr2+r2(r=u2)=n22n1nn2du2(1+u2)=n22n22(arctan(n)arctan(1n))=n22n22(2arctan(n)π2)0π2cosθsinθdθ=120π2sin(2θ)dθ(2θ=t)=120πsintdt2=1220πsintdtch.sint=xgivesint=x2t=arcsin(x2)0πsintdt=0π2sintdt+π2πsintdt=01x2x1x4dx=012x21x4dx....butn22n22{2arctan(n)π2}n222π2n2limn+In=+

Terms of Service

Privacy Policy

Contact: info@tinkutara.com