Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 34719 by abdo mathsup 649 cc last updated on 10/May/18

calculate Γ(n+(1/2)) with n ∈N.

$${calculate}\:\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\:{with}\:{n}\:\in{N}. \\ $$

Commented by abdo mathsup 649 cc last updated on 12/May/18

we have Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t) dt ⇒  Γ(n+(1/2))  = ∫_0 ^∞  t^(n−(1/2))  e^(−t) dt   =_(t=u^2 )    ∫_0 ^∞    (u^2 )^(n−(1/2))  e^(−u^2 )  2udu  = 2∫_0 ^∞    u^(2n)   e^(−u^2 ) du  let put  A_n   = ∫_0 ^∞ u^(2n)  e^(−u^2 ) du  by parts  α^′  =u^(2n)   and β=e^(−u^2 )   A_n  = [  (1/(2n+1)) u^(2n+1) e^(−u^2 ) ]_0 ^(+∞)   − ∫_0 ^∞  (1/(2n+1)) u^(2n+1)  (−2u)e^(−u^2 ) du  =  (2/(2n+1)) ∫_0 ^∞   u^(2n+2)  e^(−u^2 ) du  = (2/(2n+1)) A_(n+1)   ⇒ A_(n+1) = ((2n+1)/2) A_n    Π_(k=0) ^(n−1)  A_(k+1)  = ((Π_(k=0) ^(n−1) (2k+1))/2^n ) Π_(k=0) ^(n−1)   A_n  ⇒  A_n   = ((Π_(k=0) ^(n−1)  (2k+1))/2^n ) A_0     but A_0 =∫_0 ^∞  e^(−u^2 ) du =((√π)/2)  ⇒ A_n   = ((√π)/2^(n+1) )  ( 1.3.5....(2n−1))  = ((√π)/2^(n+1) )  ((1.2.3.4.....(2n))/(2^n n!))  =(((√π)   (2n)!)/(2^(2n+1)  (n!)))

$${we}\:{have}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\Rightarrow \\ $$$$\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\:\:=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}−\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−{t}} {dt}\: \\ $$$$=_{{t}={u}^{\mathrm{2}} } \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\left({u}^{\mathrm{2}} \right)^{{n}−\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−{u}^{\mathrm{2}} } \:\mathrm{2}{udu} \\ $$$$=\:\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\:{u}^{\mathrm{2}{n}} \:\:{e}^{−{u}^{\mathrm{2}} } {du}\:\:{let}\:{put} \\ $$$${A}_{{n}} \:\:=\:\int_{\mathrm{0}} ^{\infty} {u}^{\mathrm{2}{n}} \:{e}^{−{u}^{\mathrm{2}} } {du}\:\:{by}\:{parts}\:\:\alpha^{'} \:={u}^{\mathrm{2}{n}} \:\:{and}\:\beta={e}^{−{u}^{\mathrm{2}} } \\ $$$${A}_{{n}} \:=\:\left[\:\:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:{u}^{\mathrm{2}{n}+\mathrm{1}} {e}^{−{u}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{+\infty} \:\:−\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:{u}^{\mathrm{2}{n}+\mathrm{1}} \:\left(−\mathrm{2}{u}\right){e}^{−{u}^{\mathrm{2}} } {du} \\ $$$$=\:\:\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\infty} \:\:{u}^{\mathrm{2}{n}+\mathrm{2}} \:{e}^{−{u}^{\mathrm{2}} } {du}\:\:=\:\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}\:{A}_{{n}+\mathrm{1}} \\ $$$$\Rightarrow\:{A}_{{n}+\mathrm{1}} =\:\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}}\:{A}_{{n}} \: \\ $$$$\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{A}_{{k}+\mathrm{1}} \:=\:\frac{\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{2}{k}+\mathrm{1}\right)}{\mathrm{2}^{{n}} }\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{A}_{{n}} \:\Rightarrow \\ $$$${A}_{{n}} \:\:=\:\frac{\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left(\mathrm{2}{k}+\mathrm{1}\right)}{\mathrm{2}^{{n}} }\:{A}_{\mathrm{0}} \:\:\:\:{but}\:{A}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}^{\mathrm{2}} } {du}\:=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\Rightarrow\:{A}_{{n}} \:\:=\:\frac{\sqrt{\pi}}{\mathrm{2}^{{n}+\mathrm{1}} }\:\:\left(\:\mathrm{1}.\mathrm{3}.\mathrm{5}....\left(\mathrm{2}{n}−\mathrm{1}\right)\right) \\ $$$$=\:\frac{\sqrt{\pi}}{\mathrm{2}^{{n}+\mathrm{1}} }\:\:\frac{\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}.....\left(\mathrm{2}{n}\right)}{\mathrm{2}^{{n}} {n}!}\:\:=\frac{\sqrt{\pi}\:\:\:\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} \:\left({n}!\right)} \\ $$

Commented by abdo mathsup 649 cc last updated on 12/May/18

Γ(n+(1/2)) =2A_n   ⇒ Γ(n+(1/2)) = ((√π)/2^(2n) )  (((2n)!)/(n!)) .

$$\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\mathrm{2}{A}_{{n}} \:\:\Rightarrow\:\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\frac{\sqrt{\pi}}{\mathrm{2}^{\mathrm{2}{n}} }\:\:\frac{\left(\mathrm{2}{n}\right)!}{{n}!}\:. \\ $$

Answered by alex041103 last updated on 10/May/18

By definition Γ(k)=(k−1)!=(k−1)(k−2)!.  The value Γ(n+(1/2))=(n−(1/2))!  ⇒(n−(1/2))!=(n−(1/2))(n−1−(1/2))!=...=  =((1/2))!Π_(k=2) ^n ((2k−1)/2)=((√π)/2) (1/2^(n−1) )Π_(k=1) ^(n−1) (2k+1)  ⇒Γ(n+(1/2))=((√π)/2^n ) Π_(k=1) ^(n−1) (2k+1)

$${By}\:{definition}\:\Gamma\left({k}\right)=\left({k}−\mathrm{1}\right)!=\left({k}−\mathrm{1}\right)\left({k}−\mathrm{2}\right)!. \\ $$$${The}\:{value}\:\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\left({n}−\frac{\mathrm{1}}{\mathrm{2}}\right)! \\ $$$$\Rightarrow\left({n}−\frac{\mathrm{1}}{\mathrm{2}}\right)!=\left({n}−\frac{\mathrm{1}}{\mathrm{2}}\right)\left({n}−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)!=...= \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\frac{\mathrm{2}{k}−\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\pi}}{\mathrm{2}}\:\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$$$\Rightarrow\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}^{{n}} }\:\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$

Commented by NECx last updated on 10/May/18

welcome back mr Alex

$${welcome}\:{back}\:{mr}\:{Alex} \\ $$

Commented by alex041103 last updated on 10/May/18

I′m sorry. I made a mistake.  The answer should be this:  ((√π)/2^n ) Π_(k=1) ^(n−1) (2k+1)

$${I}'{m}\:{sorry}.\:{I}\:{made}\:{a}\:{mistake}. \\ $$$${The}\:{answer}\:{should}\:{be}\:{this}: \\ $$$$\frac{\sqrt{\pi}}{\mathrm{2}^{{n}} }\:\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com