Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 34770 by abdo mathsup 649 cc last updated on 10/May/18

let f(x)= ln(1+ix^2 )  1) extrsct Re(f(x)) and Im(f(x))  2) developp f at integr serie  3) calculate f^′ (x) by two methods

$${let}\:{f}\left({x}\right)=\:{ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{extrsct}\:{Re}\left({f}\left({x}\right)\right)\:{and}\:{Im}\left({f}\left({x}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{by}\:{two}\:{methods} \\ $$

Commented by abdo mathsup 649 cc last updated on 13/May/18

1) we have proved that  f(x)=(1/2)ln(1+x^4 ) +i arctan(x^2 ) ⇒  Re(f(x))= (1/2)ln(1+x^4 ) and Im(f(x))= arctan(x^2 )  2) for ∣u∣<1 ln(1+u) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n  ⇒  (1/2)ln(1+x^4 ) = (1/2) Σ_(n=1) ^∞   (((−1)^(n−1) )/n) x^(4n)   (d/dx)(arctanu)= (1/(1+u^2 )) = Σ_(n=0) ^∞   (−1)^n  u^(2n) ⇒  arctanu  =Σ_(n=0) ^∞   (((−1)^n )/(2n+1))u^(2n+1)  ⇒  arctan(x^2 ) = Σ_(n=0) ^∞   (((−1)^n )/(2n+1)) x^(4n+2)    so   f(x)= (1/2) Σ_(n=1) ^∞   (((−1)^(n−1) )/n) x^(4n)    +i Σ_(n=0) ^∞    (((−1)^n )/(2n+1)) x^(4n+2)   the radius of convergence is R =1

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{proved}\:{that} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)\:+{i}\:{arctan}\left({x}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${Re}\left({f}\left({x}\right)\right)=\:\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)\:{and}\:{Im}\left({f}\left({x}\right)\right)=\:{arctan}\left({x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{2}\right)\:{for}\:\mid{u}\mid<\mathrm{1}\:{ln}\left(\mathrm{1}+{u}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{x}^{{n}} \:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{x}^{\mathrm{4}{n}} \\ $$$$\frac{{d}}{{dx}}\left({arctanu}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}} \:{u}^{\mathrm{2}{n}} \Rightarrow \\ $$$${arctanu}\:\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{u}^{\mathrm{2}{n}+\mathrm{1}} \:\Rightarrow \\ $$$${arctan}\left({x}^{\mathrm{2}} \right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:{x}^{\mathrm{4}{n}+\mathrm{2}} \\ $$$$\:{so}\: \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{x}^{\mathrm{4}{n}} \:\:\:+{i}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:{x}^{\mathrm{4}{n}+\mathrm{2}} \\ $$$${the}\:{radius}\:{of}\:{convergence}\:{is}\:{R}\:=\mathrm{1} \\ $$

Commented by abdo mathsup 649 cc last updated on 13/May/18

3) we have f(x)=(1/2)ln(1+x^4 ) +i arctan(x^2 ) ⇒  f^′ (x) =  ((2x^3 )/(1+x^4 ))  + i((2x)/(1+x^4 )) =((2x)/(1+x^4 ))( x^2  +i)  another method  f(x) =ln(1+ix^2 ) ⇒f^′ (x) = ((2ix)/(1+ix^2 ))  = ((2ix( 1−ix^2 ))/(1+x^4 )) = ((2ix  +2x^3 )/(1+x^4 )) = ((2x^3 )/(1+x^4 )) +i((2x)/(1+x^4 ))  .

$$\left.\mathrm{3}\right)\:{we}\:{have}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)\:+{i}\:{arctan}\left({x}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=\:\:\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}} }\:\:+\:{i}\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{4}} }\:=\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{4}} }\left(\:{x}^{\mathrm{2}} \:+{i}\right) \\ $$$${another}\:{method} \\ $$$${f}\left({x}\right)\:={ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right)\:\Rightarrow{f}^{'} \left({x}\right)\:=\:\frac{\mathrm{2}{ix}}{\mathrm{1}+{ix}^{\mathrm{2}} } \\ $$$$=\:\frac{\mathrm{2}{ix}\left(\:\mathrm{1}−{ix}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }\:=\:\frac{\mathrm{2}{ix}\:\:+\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}} }\:=\:\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}} }\:+{i}\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{4}} }\:\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 11/May/18

ln(1+ix^2 )=(1/2)ln{1^2 +(x^2 )^2 }+itan^(−1) (x^2 /1)  =(1/2)(x^4 −(((x^4 )^2 )/2)+(((x^4 )^3 )/3)....)+i(x^2 −(((x^2 )^3 )/3)+(((x^2 )^5 )/5)...)  =(1/2)(x^4 −(x^8 /2)+(x^(12) /3)....)+i(x^2 −(x^6 /3)+(x^(10) /5)−....)

$${ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left\{\mathrm{1}^{\mathrm{2}} +\left({x}^{\mathrm{2}} \right)^{\mathrm{2}} \right\}+{itan}^{−\mathrm{1}} \left({x}^{\mathrm{2}} /\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{4}} −\frac{\left({x}^{\mathrm{4}} \right)^{\mathrm{2}} }{\mathrm{2}}+\frac{\left({x}^{\mathrm{4}} \right)^{\mathrm{3}} }{\mathrm{3}}....\right)+{i}\left({x}^{\mathrm{2}} −\frac{\left({x}^{\mathrm{2}} \right)^{\mathrm{3}} }{\mathrm{3}}+\frac{\left({x}^{\mathrm{2}} \right)^{\mathrm{5}} }{\mathrm{5}}...\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{4}} −\frac{{x}^{\mathrm{8}} }{\mathrm{2}}+\frac{{x}^{\mathrm{12}} }{\mathrm{3}}....\right)+{i}\left({x}^{\mathrm{2}} −\frac{{x}^{\mathrm{6}} }{\mathrm{3}}+\frac{{x}^{\mathrm{10}} }{\mathrm{5}}−....\right) \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 11/May/18

Commented by tanmay.chaudhury50@gmail.com last updated on 11/May/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com