Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 34781 by Tinkutara last updated on 11/May/18

Answered by ajfour last updated on 11/May/18

6mgx_1 −3mgx_2 =(1/2)(18m)v^2 +(1/2)kx^2                                                .....(i)  x_1 −x_2 =x       ....(ii)  v^2 =2(((3mg)/(18m)))(((2x_1 +x_2 )/3))    ....(iii)  ⇒  (1/2)(18m)v^2 =mg(2x_1 +x_2 )  using in (i):  3mg(2x_1 −x_2 )=mg(2x_1 +x_2 )+((kx^2 )/2)  or     x_1 −x_2 =((kx^2 )/(8mg))  using  (ii):      x=((8mg)/k)   .      (3) .

$$\mathrm{6}{mgx}_{\mathrm{1}} −\mathrm{3}{mgx}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{18}{m}\right){v}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{kx}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\left({i}\right) \\ $$$${x}_{\mathrm{1}} −{x}_{\mathrm{2}} ={x}\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$${v}^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{3}{mg}}{\mathrm{18}{m}}\right)\left(\frac{\mathrm{2}{x}_{\mathrm{1}} +{x}_{\mathrm{2}} }{\mathrm{3}}\right)\:\:\:\:....\left({iii}\right) \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{18}{m}\right){v}^{\mathrm{2}} ={mg}\left(\mathrm{2}{x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right) \\ $$$${using}\:{in}\:\left({i}\right): \\ $$$$\mathrm{3}{mg}\left(\mathrm{2}{x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)={mg}\left(\mathrm{2}{x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)+\frac{{kx}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${or}\:\:\:\:\:{x}_{\mathrm{1}} −{x}_{\mathrm{2}} =\frac{{kx}^{\mathrm{2}} }{\mathrm{8}{mg}} \\ $$$${using}\:\:\left({ii}\right): \\ $$$$\:\:\:\:{x}=\frac{\mathrm{8}{mg}}{{k}}\:\:\:.\:\:\:\:\:\:\left(\mathrm{3}\right)\:. \\ $$

Commented by Tinkutara last updated on 11/May/18

Please explain (iii) equation.

Commented by ajfour last updated on 11/May/18

when spring is maximum stretched  v_(cm) ^2 =v_(6m) ^2 =v_(3m) ^2 =2a_(cm) s_(cm)   a_(cm) =(F_(ext) /(18m))   ;   s_(cm) =((12mx_1 +6mx_2 )/(18m)) .

$${when}\:{spring}\:{is}\:{maximum}\:{stretched} \\ $$$${v}_{{cm}} ^{\mathrm{2}} ={v}_{\mathrm{6}{m}} ^{\mathrm{2}} ={v}_{\mathrm{3}{m}} ^{\mathrm{2}} =\mathrm{2}{a}_{{cm}} {s}_{{cm}} \\ $$$${a}_{{cm}} =\frac{{F}_{{ext}} }{\mathrm{18}{m}}\:\:\:;\:\:\:{s}_{{cm}} =\frac{\mathrm{12}{mx}_{\mathrm{1}} +\mathrm{6}{mx}_{\mathrm{2}} }{\mathrm{18}{m}}\:. \\ $$

Commented by Tinkutara last updated on 11/May/18

Why s_(cm) =((12mx_1 +6mx_2 )/(18m))? Wouldn′t  it be along y-axis also?

$${Why}\:{s}_{{cm}} =\frac{\mathrm{12}{mx}_{\mathrm{1}} +\mathrm{6}{mx}_{\mathrm{2}} }{\mathrm{18}{m}}?\:{Wouldn}'{t} \\ $$$${it}\:{be}\:{along}\:{y}-{axis}\:{also}? \\ $$

Commented by ajfour last updated on 11/May/18

yes y_(cm ) ≠ 0 , but we′ll have to  go into the normal reactions even.  And as far as the displacement  of centre of mass is concerned,  we can assume the masses (6m)_s   and (3m)_s  have moved by x_1  and  x_2  horizontally. situations are  equivalent for obtaining s_(cm)  .

$${yes}\:{y}_{{cm}\:} \neq\:\mathrm{0}\:,\:{but}\:{we}'{ll}\:{have}\:{to} \\ $$$${go}\:{into}\:{the}\:{normal}\:{reactions}\:{even}. \\ $$$${And}\:{as}\:{far}\:{as}\:{the}\:{displacement} \\ $$$${of}\:{centre}\:{of}\:{mass}\:{is}\:{concerned}, \\ $$$${we}\:{can}\:{assume}\:{the}\:{masses}\:\left(\mathrm{6}{m}\right)_{{s}} \\ $$$${and}\:\left(\mathrm{3}{m}\right)_{{s}} \:{have}\:{moved}\:{by}\:{x}_{\mathrm{1}} \:{and} \\ $$$${x}_{\mathrm{2}} \:{horizontally}.\:{situations}\:{are} \\ $$$${equivalent}\:{for}\:{obtaining}\:{s}_{{cm}} \:. \\ $$

Commented by Tinkutara last updated on 11/May/18

Then s_(cm) =((12mx_1 −6mx_2 )/(18m)) because  3mg goes left if all motion is  considered left?

$${Then}\:{s}_{{cm}} =\frac{\mathrm{12}{mx}_{\mathrm{1}} −\mathrm{6}{mx}_{\mathrm{2}} }{\mathrm{18}{m}}\:{because} \\ $$$$\mathrm{3}{mg}\:{goes}\:{left}\:{if}\:{all}\:{motion}\:{is} \\ $$$${considered}\:{left}? \\ $$

Commented by ajfour last updated on 11/May/18

x_2  be it +ve or −ve  s_(cm) =((m_1 x_1 +m_2 x_2 )/(m_1 +m_2 )) .

$${x}_{\mathrm{2}} \:{be}\:{it}\:+{ve}\:{or}\:−{ve} \\ $$$${s}_{{cm}} =\frac{{m}_{\mathrm{1}} {x}_{\mathrm{1}} +{m}_{\mathrm{2}} {x}_{\mathrm{2}} }{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }\:. \\ $$

Commented by Tinkutara last updated on 12/May/18

Thank you very much Sir! I got the answer. ��������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com