Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 34821 by ajfour last updated on 11/May/18

Find range of     y=(x/((x−1)(x−2))) .

$${Find}\:{range}\:{of} \\ $$$$\:\:\:{y}=\frac{{x}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)}\:. \\ $$

Commented by ajfour last updated on 11/May/18

Answered by ajfour last updated on 11/May/18

(dy/dx)=((x^2 −3x+2−x(2x−3))/((x−1)^2 (x−2)^2 ))  (dy/dx)=0  ⇒   x^2 =2   ⇒   x=±(√2)  y∣_(x=−(√2))  =b=((−(√2))/((−(√2)−1)(−(√2)−2)))       ⇒    b=−(1/(((√2)+1)^2 )) = −(1/((3+2(√2))))          =−(3−2(√2))  y∣_(x=(√2))  =a =((√2)/(((√2)−1)((√2)−2)))                ⇒   a=−(1/(((√2)−1)^2 ))               a=−(1/(3−2(√2))) = −(3+2(√2))  So,  y∈ (−∞, −3−2(√2)] ∪ [2(√2)−3,∞) .

$$\frac{{dy}}{{dx}}=\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}−{x}\left(\mathrm{2}{x}−\mathrm{3}\right)}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$\frac{{dy}}{{dx}}=\mathrm{0}\:\:\Rightarrow\:\:\:{x}^{\mathrm{2}} =\mathrm{2}\:\:\:\Rightarrow\:\:\:{x}=\pm\sqrt{\mathrm{2}} \\ $$$${y}\mid_{{x}=−\sqrt{\mathrm{2}}} \:={b}=\frac{−\sqrt{\mathrm{2}}}{\left(−\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(−\sqrt{\mathrm{2}}−\mathrm{2}\right)} \\ $$$$\:\:\:\:\:\Rightarrow\:\:\:\:{b}=−\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:−\frac{\mathrm{1}}{\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\right)} \\ $$$$\:\:\:\:\:\:\:\:=−\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$$${y}\mid_{{x}=\sqrt{\mathrm{2}}} \:={a}\:=\frac{\sqrt{\mathrm{2}}}{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}}−\mathrm{2}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:{a}=−\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{a}=−\frac{\mathrm{1}}{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}\:=\:−\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$$${So}, \\ $$$${y}\in\:\left(−\infty,\:−\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right]\:\cup\:\left[\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3},\infty\right)\:. \\ $$

Commented by NECx last updated on 12/May/18

wow.... This style is new to me.  Thanks

$${wow}....\:{This}\:{style}\:{is}\:{new}\:{to}\:{me}. \\ $$$${Thanks} \\ $$

Answered by Joel579 last updated on 11/May/18

y(x^2  − 3x + 2) = x  yx^2  − 3yx − x + 2y = 0  yx^2  − (3y + 1)x + 2y = 0  x = (((3y + 1) ± (√((3y + 1)^2  − 4y(2y))))/(2y))      = (((3y + 1) ± (√(y^2  + 6y + 1)))/(2y))  y ≠ 0  y^2  + 6y + 1 ≥ 0  y ≤ −3 − 2(√2)   ∨  y ≥ −3 + 2(√2)

$${y}\left({x}^{\mathrm{2}} \:−\:\mathrm{3}{x}\:+\:\mathrm{2}\right)\:=\:{x} \\ $$$${yx}^{\mathrm{2}} \:−\:\mathrm{3}{yx}\:−\:{x}\:+\:\mathrm{2}{y}\:=\:\mathrm{0} \\ $$$${yx}^{\mathrm{2}} \:−\:\left(\mathrm{3}{y}\:+\:\mathrm{1}\right){x}\:+\:\mathrm{2}{y}\:=\:\mathrm{0} \\ $$$${x}\:=\:\frac{\left(\mathrm{3}{y}\:+\:\mathrm{1}\right)\:\pm\:\sqrt{\left(\mathrm{3}{y}\:+\:\mathrm{1}\right)^{\mathrm{2}} \:−\:\mathrm{4}{y}\left(\mathrm{2}{y}\right)}}{\mathrm{2}{y}} \\ $$$$\:\:\:\:=\:\frac{\left(\mathrm{3}{y}\:+\:\mathrm{1}\right)\:\pm\:\sqrt{{y}^{\mathrm{2}} \:+\:\mathrm{6}{y}\:+\:\mathrm{1}}}{\mathrm{2}{y}} \\ $$$${y}\:\neq\:\mathrm{0} \\ $$$${y}^{\mathrm{2}} \:+\:\mathrm{6}{y}\:+\:\mathrm{1}\:\geqslant\:\mathrm{0} \\ $$$${y}\:\leqslant\:−\mathrm{3}\:−\:\mathrm{2}\sqrt{\mathrm{2}}\:\:\:\vee\:\:{y}\:\geqslant\:−\mathrm{3}\:+\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com