Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 34849 by math khazana by abdo last updated on 11/May/18

let f(x) =    (e^(−x) /(2+x))  developp f at integr serie.

$${let}\:{f}\left({x}\right)\:=\:\:\:\:\frac{{e}^{−{x}} }{\mathrm{2}+{x}} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Commented by math khazana by abdo last updated on 13/May/18

we have f(x)= (e^(−x) /(2(1+(x/2)))) ⇒ for ∣x∣<2   2f(x)= (Σ_(n=0) ^∞  (−1)^n ((x/2))^n ) .(Σ_(n=0) ^∞   (((−1)^n  x^n )/(n!)))  = (Σ_(n=0) ^∞    (((−1)^n )/2^n ) x^n  ).(Σ_(n=0) ^∞  (((−1)^n )/(n!)) x^n )  =Σ_(n=0) ^∞  c_n  x^n    with c_n = Σ_(i+j =n)  a_i  b_j   = Σ_(i+j =n)  (((−1)^i )/2^i ) (((−1)^j )/(j!)) =Σ_(i=0) ^n  a_i  b_(n−i)   = Σ_(i=0) ^n    (((−1)^i )/2^i ) (((−1)^(n−i) )/((n−i)!)) =Σ_(i=0) ^n    (((−1)^n )/((n−i)!2^i )) ⇒  f(x)= (1/2) Σ_(n=0) ^∞  ( Σ_(i=0) ^n   (((−1)^n )/(2^i (n−i)!)))x^n  .

$${we}\:{have}\:{f}\left({x}\right)=\:\frac{{e}^{−{x}} }{\mathrm{2}\left(\mathrm{1}+\frac{{x}}{\mathrm{2}}\right)}\:\Rightarrow\:{for}\:\mid{x}\mid<\mathrm{2}\: \\ $$$$\mathrm{2}{f}\left({x}\right)=\:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \left(\frac{{x}}{\mathrm{2}}\right)^{{n}} \right)\:.\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} }{{n}!}\right) \\ $$$$=\:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }\:{x}^{{n}} \:\right).\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:{x}^{{n}} \right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:{c}_{{n}} \:{x}^{{n}} \:\:\:{with}\:{c}_{{n}} =\:\sum_{{i}+{j}\:={n}} \:{a}_{{i}} \:{b}_{{j}} \\ $$$$=\:\sum_{{i}+{j}\:={n}} \:\frac{\left(−\mathrm{1}\right)^{{i}} }{\mathrm{2}^{{i}} }\:\frac{\left(−\mathrm{1}\right)^{{j}} }{{j}!}\:=\sum_{{i}=\mathrm{0}} ^{{n}} \:{a}_{{i}} \:{b}_{{n}−{i}} \\ $$$$=\:\sum_{{i}=\mathrm{0}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{i}} }{\mathrm{2}^{{i}} }\:\frac{\left(−\mathrm{1}\right)^{{n}−{i}} }{\left({n}−{i}\right)!}\:=\sum_{{i}=\mathrm{0}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}−{i}\right)!\mathrm{2}^{{i}} }\:\Rightarrow \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(\:\sum_{{i}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{i}} \left({n}−{i}\right)!}\right){x}^{{n}} \:. \\ $$$$ \\ $$

Commented by math khazana by abdo last updated on 13/May/18

another method  f(x)= Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n    let calculate f^((n)) (0)  leibnitz formula give f^((n)) (x)= Σ_(k=0) ^n  C_n ^k  ((1/(2+x)))^((k))  (e^(−x) )^((n−k))   =Σ_(k=0) ^n   C_n ^k    (((−1)^k  k!)/((x+2)^(k+1) ))  (−1)^(n−k)  e^(−x)  ⇒  f^((n)) (0) = Σ_(k=0) ^n   C_n ^k   ((k! (−1)^n )/2^(k+1) ) ⇒  f(x) = Σ_(n=0) ^∞ (Σ_(k=0) ^n   C_n ^k       ((k!)/(n!))  (((−1)^n )/2^(k+1) )) x^n   but  C_n ^k   .((k!)/(n!))  = ((n!)/(k!(n−k)!)) ((k!)/(n!)) = (1/((n−k)!)) ⇒  f(x) = Σ_(n=0) ^∞  (Σ_(k=0) ^n    (((−1)^n )/((n−k)! 2^(k+1) )))x^n   .

$${another}\:{method} \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:{x}^{{n}} \:\:\:{let}\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$${leibnitz}\:{formula}\:{give}\:{f}^{\left({n}\right)} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left(\frac{\mathrm{1}}{\mathrm{2}+{x}}\right)^{\left({k}\right)} \:\left({e}^{−{x}} \right)^{\left({n}−{k}\right)} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} \:{k}!}{\left({x}+\mathrm{2}\right)^{{k}+\mathrm{1}} }\:\:\left(−\mathrm{1}\right)^{{n}−{k}} \:{e}^{−{x}} \:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\:\frac{{k}!\:\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{k}+\mathrm{1}} }\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\:\:\:\:\:\frac{{k}!}{{n}!}\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{k}+\mathrm{1}} }\right)\:{x}^{{n}} \:\:{but} \\ $$$${C}_{{n}} ^{{k}} \:\:.\frac{{k}!}{{n}!}\:\:=\:\frac{{n}!}{{k}!\left({n}−{k}\right)!}\:\frac{{k}!}{{n}!}\:=\:\frac{\mathrm{1}}{\left({n}−{k}\right)!}\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}−{k}\right)!\:\mathrm{2}^{{k}+\mathrm{1}} }\right){x}^{{n}} \:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com