Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 34870 by Tinkutara last updated on 12/May/18

Commented by Tinkutara last updated on 15/May/18

please help

Commented by Tinkutara last updated on 16/May/18

Anyone please see it.

Commented by Tinkutara last updated on 16/May/18

Commented by Tinkutara last updated on 16/May/18

Actually this was the whole comprehension.

Answered by Rasheed.Sindhi last updated on 20/May/18

Pattern approach  Using strategy of Q#34760,we can  determine ′number of triangles′ for  various values of c:(In the following N  denotes number of triangle.)   ((c,N),(1,3),(2,(12)),(3,(27)),(4,(48)),(5,(75)),(⋮,⋮) )  Number of triangles(N) make following    sequence :   3,12,27,48,75,108,....  We can easily determine general term:   [(c,1,2,3,4,5,6,(..)),(N,3,(12),(27),(48),(75),(108),(..)),(,(3.1),(3.4),(3.9),(3.16),(3.25),(3.36),(..)),(,(3.1^2 ),(3.2^2 ),(3.3^2 ),(3.4^2 ),(3.5^2 ),(3.6^2 ),(..)) ]  Hence general term is 3c^2   Number of triangles : 3c^2

$$\mathrm{Pattern}\:\mathrm{approach} \\ $$$$\mathrm{Using}\:\mathrm{strategy}\:\mathrm{of}\:\mathrm{Q}#\mathrm{34760},\mathrm{we}\:\mathrm{can} \\ $$$$\mathrm{determine}\:'\mathrm{number}\:\mathrm{of}\:\mathrm{triangles}'\:\mathrm{for} \\ $$$$\mathrm{various}\:\mathrm{values}\:\mathrm{of}\:\mathrm{c}:\left(\mathrm{In}\:\mathrm{the}\:\mathrm{following}\:\mathrm{N}\right. \\ $$$$\left.\mathrm{denotes}\:\mathrm{number}\:\mathrm{of}\:\mathrm{triangle}.\right) \\ $$$$\begin{pmatrix}{\mathrm{c}}&{\mathrm{N}}\\{\mathrm{1}}&{\mathrm{3}}\\{\mathrm{2}}&{\mathrm{12}}\\{\mathrm{3}}&{\mathrm{27}}\\{\mathrm{4}}&{\mathrm{48}}\\{\mathrm{5}}&{\mathrm{75}}\\{\vdots}&{\vdots}\end{pmatrix} \\ $$$$\mathrm{Number}\:\mathrm{of}\:\mathrm{triangles}\left(\mathrm{N}\right)\:\mathrm{make}\:\mathrm{following}\: \\ $$$$\:\mathrm{sequence}\:: \\ $$$$\:\mathrm{3},\mathrm{12},\mathrm{27},\mathrm{48},\mathrm{75},\mathrm{108},.... \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{easily}\:\mathrm{determine}\:\mathrm{general}\:\mathrm{term}: \\ $$$$\begin{bmatrix}{\mathrm{c}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{..}\\{\mathrm{N}}&{\mathrm{3}}&{\mathrm{12}}&{\mathrm{27}}&{\mathrm{48}}&{\mathrm{75}}&{\mathrm{108}}&{..}\\{}&{\mathrm{3}.\mathrm{1}}&{\mathrm{3}.\mathrm{4}}&{\mathrm{3}.\mathrm{9}}&{\mathrm{3}.\mathrm{16}}&{\mathrm{3}.\mathrm{25}}&{\mathrm{3}.\mathrm{36}}&{..}\\{}&{\mathrm{3}.\mathrm{1}^{\mathrm{2}} }&{\mathrm{3}.\mathrm{2}^{\mathrm{2}} }&{\mathrm{3}.\mathrm{3}^{\mathrm{2}} }&{\mathrm{3}.\mathrm{4}^{\mathrm{2}} }&{\mathrm{3}.\mathrm{5}^{\mathrm{2}} }&{\mathrm{3}.\mathrm{6}^{\mathrm{2}} }&{..}\end{bmatrix} \\ $$$$\mathrm{Hence}\:\mathrm{general}\:\mathrm{term}\:\mathrm{is}\:\mathrm{3c}^{\mathrm{2}} \\ $$$$\mathrm{Number}\:\mathrm{of}\:\mathrm{triangles}\::\:\mathrm{3c}^{\mathrm{2}} \\ $$

Answered by Tinkutara last updated on 22/May/18

Commented by Tinkutara last updated on 22/May/18

This was the solution. Can you please elaborate it? I can't understand it.

Answered by Rasheed.Sindhi last updated on 24/May/18

A try to elaborate the answer given  with question in the book.  (See ans by Mr Tinkutara here)  (a,a,b):A triangle, (i) with integer sides  and (ii) at least two sides are equal with  the possibility a=b.  By triangle inequality,         a+a>b⇒  2a−1≥b  Also    b≥1  So,                   2a−1≥b≥1...............A                    1≤a,b≤2c  (Given).......B  Case-1:       1≤a≤c      1≤b≤2c ∧ b≤2a−1 ⇒1≤b≤2a−1 ∗    i-e there are 2a−1 choices for b when    a is fixed.  For a=c → 2c−1 choices for b  For a=c−1→ 2(c−1)−1=2c−3 choices for b  For a=c−2→ 2(c−2)−1=2c−5 choices for b         ......          .....  For a=2→ 2(2)−1=3 choices for b  For a=1→ 2(1)−1=1 choices for b  Total choices for this case  (2c−1)+(2c−3)+(2c+5)...+3+1_(−−−−−−−−−−−−c terms−−−−−−) =c^2   Notice that above is the sum  of c consecutive  odd numbers.(Treate it as AP)  Case-2:      c+1≤a≤2c (c values)      b≤2c ∧ 1≤b≤2a−1 ⇒1≤b≤2c ∗∗  i-e b takes  2c values.  ∵ a takes c values from c+1 to 2c      and for each of these values        b takes 2c vales  ∴ (a,a,b) takes c.2c=2c^2  values  Case-1  &  Case-2:              c^2 +2c^2 =3c^2   Number of (a,a,b)=3c^2

$$\mathrm{A}\:\mathrm{try}\:\mathrm{to}\:\mathrm{elaborate}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{given} \\ $$$$\mathrm{with}\:\mathrm{question}\:\mathrm{in}\:\mathrm{the}\:\mathrm{book}. \\ $$$$\left(\mathrm{See}\:\mathrm{ans}\:\mathrm{by}\:\mathrm{Mr}\:\mathrm{Tinkutara}\:\mathrm{here}\right) \\ $$$$\left({a},{a},{b}\right):\mathrm{A}\:\mathrm{triangle},\:\left(\mathrm{i}\right)\:\mathrm{with}\:\mathrm{integer}\:\mathrm{sides} \\ $$$$\mathrm{and}\:\left(\mathrm{ii}\right)\:\mathrm{at}\:\mathrm{least}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{equal}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{possibility}\:{a}={b}. \\ $$$$\mathrm{By}\:\mathrm{triangle}\:\mathrm{inequality}, \\ $$$$\:\:\:\:\:\:\:{a}+{a}>{b}\Rightarrow\:\:\mathrm{2}{a}−\mathrm{1}\geqslant{b} \\ $$$$\mathrm{Also}\:\:\:\:{b}\geqslant\mathrm{1} \\ $$$$\mathrm{So}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{a}−\mathrm{1}\geqslant{b}\geqslant\mathrm{1}...............\mathrm{A} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\leqslant{a},{b}\leqslant\mathrm{2c}\:\:\left(\mathrm{Given}\right).......\mathrm{B} \\ $$$$\mathrm{Case}-\mathrm{1}:\:\:\:\:\:\:\:\mathrm{1}\leqslant{a}\leqslant\mathrm{c}\: \\ $$$$\:\:\:\mathrm{1}\leqslant{b}\leqslant\mathrm{2}{c}\:\wedge\:{b}\leqslant\mathrm{2}{a}−\mathrm{1}\:\Rightarrow\mathrm{1}\leqslant{b}\leqslant\mathrm{2}{a}−\mathrm{1}\:\ast \\ $$$$\:\:\mathrm{i}-\mathrm{e}\:\mathrm{there}\:\mathrm{are}\:\mathrm{2}{a}−\mathrm{1}\:\mathrm{choices}\:\mathrm{for}\:{b}\:\mathrm{when} \\ $$$$\:\:{a}\:\mathrm{is}\:\mathrm{fixed}. \\ $$$$\mathrm{For}\:{a}={c}\:\rightarrow\:\mathrm{2}{c}−\mathrm{1}\:{choices}\:{for}\:{b} \\ $$$$\mathrm{For}\:{a}={c}−\mathrm{1}\rightarrow\:\mathrm{2}\left({c}−\mathrm{1}\right)−\mathrm{1}=\mathrm{2}{c}−\mathrm{3}\:{choices}\:{for}\:{b} \\ $$$$\mathrm{For}\:{a}={c}−\mathrm{2}\rightarrow\:\mathrm{2}\left({c}−\mathrm{2}\right)−\mathrm{1}=\mathrm{2}{c}−\mathrm{5}\:{choices}\:{for}\:{b} \\ $$$$\:\:\:\:\:\:\:...... \\ $$$$\:\:\:\:\:\:\:\:..... \\ $$$$\mathrm{For}\:{a}=\mathrm{2}\rightarrow\:\mathrm{2}\left(\mathrm{2}\right)−\mathrm{1}=\mathrm{3}\:{choices}\:{for}\:{b} \\ $$$$\mathrm{For}\:{a}=\mathrm{1}\rightarrow\:\mathrm{2}\left(\mathrm{1}\right)−\mathrm{1}=\mathrm{1}\:{choices}\:{for}\:{b} \\ $$$$\mathrm{Total}\:\mathrm{choices}\:\mathrm{for}\:\mathrm{this}\:\mathrm{case} \\ $$$$\underset{−−−−−−−−−−−−{c}\:{terms}−−−−−−} {\left(\mathrm{2c}−\mathrm{1}\right)+\left(\mathrm{2c}−\mathrm{3}\right)+\left(\mathrm{2c}+\mathrm{5}\right)...+\mathrm{3}+\mathrm{1}}={c}^{\mathrm{2}} \\ $$$$\mathrm{Notice}\:\mathrm{that}\:\mathrm{above}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\:\mathrm{of}\:\mathrm{c}\:\mathrm{consecutive} \\ $$$$\mathrm{odd}\:\mathrm{numbers}.\left(\mathrm{Treate}\:\mathrm{it}\:\mathrm{as}\:\mathrm{AP}\right) \\ $$$$\mathrm{Case}-\mathrm{2}:\:\:\:\:\:\:\mathrm{c}+\mathrm{1}\leqslant{a}\leqslant\mathrm{2c}\:\left(\mathrm{c}\:\mathrm{values}\right) \\ $$$$\:\:\:\:{b}\leqslant\mathrm{2c}\:\wedge\:\mathrm{1}\leqslant{b}\leqslant\mathrm{2}{a}−\mathrm{1}\:\Rightarrow\mathrm{1}\leqslant{b}\leqslant\mathrm{2}{c}\:\ast\ast \\ $$$$\mathrm{i}-\mathrm{e}\:{b}\:\mathrm{takes}\:\:\mathrm{2c}\:\mathrm{values}. \\ $$$$\because\:{a}\:\mathrm{takes}\:{c}\:\mathrm{values}\:\mathrm{from}\:\mathrm{c}+\mathrm{1}\:\mathrm{to}\:\mathrm{2c} \\ $$$$\:\:\:\:\mathrm{and}\:\mathrm{for}\:\mathrm{each}\:\mathrm{of}\:\mathrm{these}\:\mathrm{values}\: \\ $$$$\:\:\:\:\:{b}\:\mathrm{takes}\:\mathrm{2}{c}\:\mathrm{vales} \\ $$$$\therefore\:\left({a},{a},{b}\right)\:\mathrm{takes}\:{c}.\mathrm{2}{c}=\mathrm{2}{c}^{\mathrm{2}} \:\mathrm{values} \\ $$$$\mathrm{Case}-\mathrm{1}\:\:\&\:\:\mathrm{Case}-\mathrm{2}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{c}^{\mathrm{2}} +\mathrm{2}{c}^{\mathrm{2}} =\mathrm{3}{c}^{\mathrm{2}} \\ $$$${Number}\:{of}\:\left({a},{a},{b}\right)=\mathrm{3}{c}^{\mathrm{2}} \\ $$

Commented by Rasheed.Sindhi last updated on 24/May/18

 ∗ For 1≤a≤c                b≤2c ∧ b≤2a−1              ⇒b≤2a−1  [  b≤2c ∧ b≤2a−1⇒b≤min(2c,2a−1)  1≤a≤c⇒2≤2a−1≤2c−1          ⇒2a−1≤2c  So 2a−1 is always less than 2c ]  ∗∗ For   c+1≤a≤2c                b≤2c ∧ b≤2a−1           ⇒b≤2c  [  b≤2c ∧ b≤2a−1⇒b≤min(2c,2a−1)   c+1≤a≤2c⇒2c≤2a−1≤4c−1  So 2c always less than 2a−1

$$\:\ast\:\mathrm{For}\:\mathrm{1}\leqslant{a}\leqslant{c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}\leqslant\mathrm{2}{c}\:\wedge\:{b}\leqslant\mathrm{2}{a}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow{b}\leqslant\mathrm{2}{a}−\mathrm{1} \\ $$$$\left[\:\:{b}\leqslant\mathrm{2}{c}\:\wedge\:{b}\leqslant\mathrm{2}{a}−\mathrm{1}\Rightarrow{b}\leqslant\mathrm{min}\left(\mathrm{2}{c},\mathrm{2}{a}−\mathrm{1}\right)\right. \\ $$$$\mathrm{1}\leqslant{a}\leqslant{c}\Rightarrow\mathrm{2}\leqslant\mathrm{2}{a}−\mathrm{1}\leqslant\mathrm{2}{c}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\mathrm{2}{a}−\mathrm{1}\leqslant\mathrm{2}{c} \\ $$$$\left.\mathrm{So}\:\mathrm{2}{a}−\mathrm{1}\:\mathrm{is}\:\mathrm{always}\:\mathrm{less}\:\mathrm{than}\:\mathrm{2}{c}\:\right] \\ $$$$\ast\ast\:\mathrm{For}\:\:\:{c}+\mathrm{1}\leqslant{a}\leqslant\mathrm{2}{c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}\leqslant\mathrm{2}{c}\:\wedge\:{b}\leqslant\mathrm{2}{a}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\Rightarrow{b}\leqslant\mathrm{2}{c} \\ $$$$\left[\:\:{b}\leqslant\mathrm{2}{c}\:\wedge\:{b}\leqslant\mathrm{2}{a}−\mathrm{1}\Rightarrow{b}\leqslant\mathrm{min}\left(\mathrm{2}{c},\mathrm{2}{a}−\mathrm{1}\right)\right. \\ $$$$\:{c}+\mathrm{1}\leqslant{a}\leqslant\mathrm{2}{c}\Rightarrow\mathrm{2}{c}\leqslant\mathrm{2}{a}−\mathrm{1}\leqslant\mathrm{4}{c}−\mathrm{1} \\ $$$$\mathrm{So}\:\mathrm{2}{c}\:\mathrm{always}\:\mathrm{less}\:\mathrm{than}\:\mathrm{2}{a}−\mathrm{1} \\ $$$$ \\ $$

Commented by Tinkutara last updated on 24/May/18

Thank you very much Sir! I got the answer. ��������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com