Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 35051 by math khazana by abdo last updated on 14/May/18

calculate Σ_(n=0) ^∞   ((n+3)/(2n+1))x^n

calculaten=0n+32n+1xn

Commented by math khazana by abdo last updated on 10/Jun/18

case1  x>0  let  S(x)=Σ_(n=0) ^∞  ((n+3)/(2n+1)) x^n   = (1/(√x))Σ_(n=0) ^∞   ((n+3)/(2n+1)) ((√x))^(2n+1)  =(1/(√x)) f((√x)) with  f(t) = Σ_(n=0) ^∞  ((n+3)/(2n+1)) t^(2n+1)   f^′ (t)= Σ_(n=0) ^∞   (n+3)t^(2n)   = Σ_(n=0) ^∞  n t^(2n)   +3 Σ_(n=0) ^∞  t^(2n)    but  Σ_(n=0) ^∞   t^(2n)  = (1/(1−t^2 ))  and we have Σ_(n=0) ^∞  t^n  =(1/(1−t)) ⇒  Σ_(n=1) ^∞  n t^(n−1)  = (t/((1−t)^2 )) ⇒  Σ_(n=0) ^∞   n t^(2n)  = Σ_(n=1) ^∞  n (t^2 )^n  =t^2  Σ_(n=1) ^∞  n(t^2 )^(n−1)   =t^2   (t^2 /((1−t^2 )^2 )) = (t^4 /((1−t^2 )^2 )) ⇒  f^′ (t) = (t^4 /((1−t^2 )^2 )) +(3/(1−t^2 )) ⇒  f(t) = ∫_. ^t   (  (x^4 /((1−x^2 )^2 )) +(3/(1−x^2 )))dx  = ∫_. ^t     (x^4 /((1−x^2 )^2 ))dx  +3 ∫_. ^t   (dx/(1−x^2 ))  but  ∫_. ^t   (dx/(1−x^2 )) = ∫^t   { (1/(1−x)) +(1/(1+x))}dx=ln∣((1+t)/(1−t))∣ +c  changement x =chu give  ∫^t     (x^4 /((1−x^2 )^2 ))dx = ∫^t   ((ch^4 u)/(sh^4 u)) .shu du  =∫^t     ((ch^4 u)/(sh^3 u)) du  = (1/4)∫^t     (((1+ch(2u))^2 )/(((ch(2u)−1)/2) sh(u))) du  =(1/2) ∫^t    ((1+2ch(2u) +ch^2 (2u))/((ch(2u)−1)sh(u))) du ....be continued..

case1x>0letS(x)=n=0n+32n+1xn=1xn=0n+32n+1(x)2n+1=1xf(x)withf(t)=n=0n+32n+1t2n+1f(t)=n=0(n+3)t2n=n=0nt2n+3n=0t2nbutn=0t2n=11t2andwehaven=0tn=11tn=1ntn1=t(1t)2n=0nt2n=n=1n(t2)n=t2n=1n(t2)n1=t2t2(1t2)2=t4(1t2)2f(t)=t4(1t2)2+31t2f(t)=.t(x4(1x2)2+31x2)dx=.tx4(1x2)2dx+3.tdx1x2but.tdx1x2=t{11x+11+x}dx=ln1+t1t+cchangementx=chugivetx4(1x2)2dx=tch4ush4u.shudu=tch4ush3udu=14t(1+ch(2u))2ch(2u)12sh(u)du=12t1+2ch(2u)+ch2(2u)(ch(2u)1)sh(u)du....becontinued..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com