Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 35071 by Rasheed.Sindhi last updated on 15/May/18

A 20-digit decimal number has been  converted into octal system.Say it has   n digits. What can be minimum and  maximum possible values of n?

$$\mathrm{A}\:\mathrm{20}-\mathrm{digit}\:\mathrm{decimal}\:\mathrm{number}\:\mathrm{has}\:\mathrm{been} \\ $$$$\mathrm{converted}\:\mathrm{into}\:\mathrm{octal}\:\mathrm{system}.\mathrm{Say}\:\mathrm{it}\:\mathrm{has}\: \\ $$$$\mathrm{n}\:\mathrm{digits}.\:\mathrm{What}\:\mathrm{can}\:\mathrm{be}\:\mathrm{minimum}\:\mathrm{and} \\ $$$$\mathrm{maximum}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n}? \\ $$$$ \\ $$

Answered by candre last updated on 15/May/18

m=lα^k +d;0<l≤α−1∧0≤d<α^k ∧(l,d,k,α)∈N^4 ∧α>1  m=(l+dα^(−k) )α^k   log_α m=log_α [(l+dα^(−k) )α^k ]  =log_α α^k +log_α (l+dα^(−k) )  =klog_α α+log_α (l+dα^(−k) )  =k+log_α (l+dα^(−k) )  0≤d<α^k ⇒0≤dα^(−k) <1  0<l+dα^(−k) <α  log_α (l+dα^(−k) )<1  α^k ≤m<α^(k+1) ⇒k≤log_α m<k+1  m=a_k ...a_0 ⇒k−0+1=k+1  min⇒num=10^(19)   min=⌊log_8 10^(19) ⌋+1=⌊19log_8 10⌋+1=22  max⇒num=10^(20) −1  max=⌊log_8 (10^(20) −1)⌋+1=23

$${m}={l}\alpha^{{k}} +{d};\mathrm{0}<{l}\leqslant\alpha−\mathrm{1}\wedge\mathrm{0}\leqslant{d}<\alpha^{{k}} \wedge\left({l},{d},{k},\alpha\right)\in\mathbb{N}^{\mathrm{4}} \wedge\alpha>\mathrm{1} \\ $$$${m}=\left({l}+{d}\alpha^{−{k}} \right)\alpha^{{k}} \\ $$$$\mathrm{log}_{\alpha} {m}=\mathrm{log}_{\alpha} \left[\left({l}+{d}\alpha^{−{k}} \right)\alpha^{{k}} \right] \\ $$$$=\mathrm{log}_{\alpha} \alpha^{{k}} +\mathrm{log}_{\alpha} \left({l}+{d}\alpha^{−{k}} \right) \\ $$$$={k}\mathrm{log}_{\alpha} \alpha+\mathrm{log}_{\alpha} \left({l}+{d}\alpha^{−{k}} \right) \\ $$$$={k}+\mathrm{log}_{\alpha} \left({l}+{d}\alpha^{−{k}} \right) \\ $$$$\mathrm{0}\leqslant{d}<\alpha^{{k}} \Rightarrow\mathrm{0}\leqslant{d}\alpha^{−{k}} <\mathrm{1} \\ $$$$\mathrm{0}<{l}+{d}\alpha^{−{k}} <\alpha \\ $$$$\mathrm{log}_{\alpha} \left({l}+{d}\alpha^{−{k}} \right)<\mathrm{1} \\ $$$$\alpha^{{k}} \leqslant{m}<\alpha^{{k}+\mathrm{1}} \Rightarrow{k}\leqslant\mathrm{log}_{\alpha} {m}<{k}+\mathrm{1} \\ $$$${m}={a}_{{k}} ...{a}_{\mathrm{0}} \Rightarrow{k}−\mathrm{0}+\mathrm{1}={k}+\mathrm{1} \\ $$$${min}\Rightarrow{num}=\mathrm{10}^{\mathrm{19}} \\ $$$${min}=\lfloor\mathrm{log}_{\mathrm{8}} \mathrm{10}^{\mathrm{19}} \rfloor+\mathrm{1}=\lfloor\mathrm{19log}_{\mathrm{8}} \mathrm{10}\rfloor+\mathrm{1}=\mathrm{22} \\ $$$${max}\Rightarrow{num}=\mathrm{10}^{\mathrm{20}} −\mathrm{1} \\ $$$${max}=\lfloor\mathrm{log}_{\mathrm{8}} \left(\mathrm{10}^{\mathrm{20}} −\mathrm{1}\right)\rfloor+\mathrm{1}=\mathrm{23} \\ $$

Commented by Rasheed.Sindhi last updated on 15/May/18

†ђД₪k§ Д ℓø† §îЯ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com