Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35101 by ajfour last updated on 15/May/18

Find volume enclosed by  (x^2 /a^2 )+(y^2 /b^2 )+(z^2 /c^2 )=1  .

$${Find}\:{volume}\:{enclosed}\:{by} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{{c}^{\mathrm{2}} }=\mathrm{1}\:\:. \\ $$

Commented by behi83417@gmail.com last updated on 15/May/18

V=(4/3).π.a.b.c,i think.

$${V}=\frac{\mathrm{4}}{\mathrm{3}}.\pi.{a}.{b}.{c},{i}\:{think}. \\ $$

Answered by ajfour last updated on 15/May/18

At a chosen z= constant < c  the  eq. of cross section of  ellipsoid ⊥ to z axis is  (x^2 /(a^2 (1−(z^2 /c^2 ))))+(y^2 /(b^2 (1−(z^2 /c^2 )))) =1  cross sectional area       = πab(1−(z^2 /c^2 )) .  V=∫_(−c) ^(  c) πab(1−(z^2 /c^2 ))dz        =2πab(c−(c/3)) =((4π)/3)abc .

$${At}\:{a}\:{chosen}\:{z}=\:{constant}\:<\:{c} \\ $$$${the}\:\:{eq}.\:{of}\:{cross}\:{section}\:{of} \\ $$$${ellipsoid}\:\bot\:{to}\:{z}\:{axis}\:{is} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} \left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\right)}+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} \left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\right)}\:=\mathrm{1} \\ $$$${cross}\:{sectional}\:{area} \\ $$$$\:\:\:\:\:=\:\pi{ab}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\right)\:. \\ $$$${V}=\int_{−{c}} ^{\:\:{c}} \pi{ab}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\right){dz} \\ $$$$ \\ $$$$\:\:\:\:=\mathrm{2}\pi{ab}\left({c}−\frac{{c}}{\mathrm{3}}\right)\:=\frac{\mathrm{4}\pi}{\mathrm{3}}{abc}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/May/18

volume=∫_(−a) ^(+a) ∫_(−b) ^(+b) ∫_(−c) ^(+c) dxdydz  now let u_1 =(x^2 /(a^2   )) , x=au_1 ^(1/2)   dx=a×(1/2)×u_1 ^(−(1/2)) du_1   dy=b×(1/2)×u_2 ^(−(1/2) ) du_2   dz=c×(1/2)×u_3 ^(−(1/2))  du_3   8∫_0 ^1 ∫_0 ^1 ∫_0 ^1 abc×(1/8)×u_1 ^((1/2)−1) u_2 ^((1/2)−1) u_3 ^((1/2)−1) du_1 du_2 du_3   8×((abc)/8).((⌈((1/2))×⌈((1/2))×⌈((1/2)))/(⌈((1/2)+(1/2)+(1/2)+1)))  8×((abc)/8)×((((√Π))^3 )/((3/2)×⌈((3/2))))  8×((abc)/8)×((Π(√Π) )/((3/2)×(1/2)×⌈((1/2))))  ((4abc)/3)×Π

$${volume}=\int_{−{a}} ^{+{a}} \int_{−{b}} ^{+{b}} \int_{−{c}} ^{+{c}} {dxdydz} \\ $$$${now}\:{let}\:{u}_{\mathrm{1}} =\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} \:\:}\:,\:{x}={au}_{\mathrm{1}} ^{\mathrm{1}/\mathrm{2}} \\ $$$${dx}={a}×\frac{\mathrm{1}}{\mathrm{2}}×{u}_{\mathrm{1}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} {du}_{\mathrm{1}} \\ $$$${dy}={b}×\frac{\mathrm{1}}{\mathrm{2}}×{u}_{\mathrm{2}} ^{−\frac{\mathrm{1}}{\mathrm{2}}\:} {du}_{\mathrm{2}} \\ $$$${dz}={c}×\frac{\mathrm{1}}{\mathrm{2}}×{u}_{\mathrm{3}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{du}_{\mathrm{3}} \\ $$$$\mathrm{8}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {abc}×\frac{\mathrm{1}}{\mathrm{8}}×{u}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {u}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {u}_{\mathrm{3}} ^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {du}_{\mathrm{1}} {du}_{\mathrm{2}} {du}_{\mathrm{3}} \\ $$$$\mathrm{8}×\frac{{abc}}{\mathrm{8}}.\frac{\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)×\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)×\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right)} \\ $$$$\mathrm{8}×\frac{{abc}}{\mathrm{8}}×\frac{\left(\sqrt{\Pi}\right)^{\mathrm{3}} }{\frac{\mathrm{3}}{\mathrm{2}}×\lceil\left(\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$\mathrm{8}×\frac{{abc}}{\mathrm{8}}×\frac{\Pi\sqrt{\Pi}\:}{\frac{\mathrm{3}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}×\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$\frac{\mathrm{4}{abc}}{\mathrm{3}}×\Pi \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 15/May/18

Commented by tanmay.chaudhury50@gmail.com last updated on 15/May/18

using dirichlet theorem

$${using}\:{dirichlet}\:{theorem} \\ $$

Commented by ajfour last updated on 15/May/18

thanks.

$${thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com