Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 35150 by Victor31926 last updated on 16/May/18

Answered by Rasheed.Sindhi last updated on 16/May/18

•Any power of even number is even       and even number gives remainder 0       on dividing by 2  •Any power of odd number is odd       and odd number gives remainder 1       on dividing by 2   ••^(•)   1^(2018) ≡1(mod 2)  2^(2018) ≡0(mod 2)  3^(2018) ≡1(mod 2)  4^(2018) ≡0(mod 2)  5^(2018) ≡1(mod 2)  6^(2018) ≡0(mod 2)  7^(2018) ≡1(mod 2)  8^(2018) ≡0(mod 2)  Adding all above congruences  1^(2018) +2^(2018) +...+8^(2018)                  ≡1+0+1+0+1+0+1+0(mod 2)                 ≡4≡0(mod 2)  ••^(•) The remainder is 0

$$\bullet\mathrm{Any}\:\mathrm{power}\:\mathrm{of}\:\mathrm{even}\:\mathrm{number}\:\mathrm{is}\:\mathrm{even} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{even}\:\mathrm{number}\:\mathrm{gives}\:\mathrm{remainder}\:\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{on}\:\mathrm{dividing}\:\mathrm{by}\:\mathrm{2} \\ $$$$\bullet\mathrm{Any}\:\mathrm{power}\:\mathrm{of}\:\mathrm{odd}\:\mathrm{number}\:\mathrm{is}\:\mathrm{odd} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{odd}\:\mathrm{number}\:\mathrm{gives}\:\mathrm{remainder}\:\mathrm{1} \\ $$$$\:\:\:\:\:\mathrm{on}\:\mathrm{dividing}\:\mathrm{by}\:\mathrm{2} \\ $$$$\:\overset{\bullet} {\bullet\bullet} \\ $$$$\mathrm{1}^{\mathrm{2018}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\mathrm{2}^{\mathrm{2018}} \equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\mathrm{3}^{\mathrm{2018}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\mathrm{4}^{\mathrm{2018}} \equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\mathrm{5}^{\mathrm{2018}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\mathrm{6}^{\mathrm{2018}} \equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\mathrm{7}^{\mathrm{2018}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\mathrm{8}^{\mathrm{2018}} \equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\mathrm{Adding}\:\mathrm{all}\:\mathrm{above}\:\mathrm{congruences} \\ $$$$\mathrm{1}^{\mathrm{2018}} +\mathrm{2}^{\mathrm{2018}} +...+\mathrm{8}^{\mathrm{2018}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\equiv\mathrm{1}+\mathrm{0}+\mathrm{1}+\mathrm{0}+\mathrm{1}+\mathrm{0}+\mathrm{1}+\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\equiv\mathrm{4}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\overset{\bullet} {\bullet\bullet}\mathrm{The}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{0} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 16/May/18

let solve it analytically...  segregating the terms  (1^(2018) +3^(2018) +5^(2018) +7^(2018) )+  (2^(2018) +4^(2018) +6^(2018) +8^(2018) )  the even terms segregated in brackets are  divisble by 2  now   7^(2018) =(8−1)^(2018)   =8^(2018) −C_1 ^(2018) .8^(2017) +C_2 ^(2018) 8^(2016) ....+(−1)^(2018)  so   when devided by 2 Remainder is...(−1)^(2018) =1  5^(2018) =(6−1)^(2018) =6^(2018) −C_1 ^(2018) 6^(2017) +...+(−1)^(2018)   so R=(−1)^(2018) =1  3^(2018) =(4−1)^(2018) =4^(2018) −C_1 ^(2018) .4^(2017) +...+(−1)^(2018)   so R=(−1)^(2018) =1   (1)^(2018) =1  so sum of remainders=1+1+1+1=4  divisible by 2  so Remainder=0  so when 1^(2018) +2^(2018) +...+8^(2018)  is devided by 2  remainder is 0

$${let}\:{solve}\:{it}\:{analytically}... \\ $$$${segregating}\:{the}\:{terms} \\ $$$$\left(\mathrm{1}^{\mathrm{2018}} +\mathrm{3}^{\mathrm{2018}} +\mathrm{5}^{\mathrm{2018}} +\mathrm{7}^{\mathrm{2018}} \right)+ \\ $$$$\left(\mathrm{2}^{\mathrm{2018}} +\mathrm{4}^{\mathrm{2018}} +\mathrm{6}^{\mathrm{2018}} +\mathrm{8}^{\mathrm{2018}} \right) \\ $$$${the}\:{even}\:{terms}\:{segregated}\:{in}\:{brackets}\:{are} \\ $$$${divisble}\:{by}\:\mathrm{2} \\ $$$${now}\: \\ $$$$\mathrm{7}^{\mathrm{2018}} =\left(\mathrm{8}−\mathrm{1}\right)^{\mathrm{2018}} \\ $$$$=\mathrm{8}^{\mathrm{2018}} −{C}_{\mathrm{1}} ^{\mathrm{2018}} .\mathrm{8}^{\mathrm{2017}} +{C}_{\mathrm{2}} ^{\mathrm{2018}} \mathrm{8}^{\mathrm{2016}} ....+\left(−\mathrm{1}\right)^{\mathrm{2018}} \:{so} \\ $$$$\:{when}\:{devided}\:{by}\:\mathrm{2}\:{Remainder}\:{is}...\left(−\mathrm{1}\right)^{\mathrm{2018}} =\mathrm{1} \\ $$$$\mathrm{5}^{\mathrm{2018}} =\left(\mathrm{6}−\mathrm{1}\right)^{\mathrm{2018}} =\mathrm{6}^{\mathrm{2018}} −{C}_{\mathrm{1}} ^{\mathrm{2018}} \mathrm{6}^{\mathrm{2017}} +...+\left(−\mathrm{1}\right)^{\mathrm{2018}} \\ $$$${so}\:{R}=\left(−\mathrm{1}\right)^{\mathrm{2018}} =\mathrm{1} \\ $$$$\mathrm{3}^{\mathrm{2018}} =\left(\mathrm{4}−\mathrm{1}\right)^{\mathrm{2018}} =\mathrm{4}^{\mathrm{2018}} −{C}_{\mathrm{1}} ^{\mathrm{2018}} .\mathrm{4}^{\mathrm{2017}} +...+\left(−\mathrm{1}\right)^{\mathrm{2018}} \\ $$$${so}\:{R}=\left(−\mathrm{1}\right)^{\mathrm{2018}} =\mathrm{1} \\ $$$$\:\left(\mathrm{1}\right)^{\mathrm{2018}} =\mathrm{1} \\ $$$${so}\:{sum}\:{of}\:{remainders}=\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}=\mathrm{4} \\ $$$${divisible}\:{by}\:\mathrm{2}\:\:{so}\:{Remainder}=\mathrm{0} \\ $$$${so}\:{when}\:\mathrm{1}^{\mathrm{2018}} +\mathrm{2}^{\mathrm{2018}} +...+\mathrm{8}^{\mathrm{2018}} \:{is}\:{devided}\:{by}\:\mathrm{2} \\ $$$${remainder}\:{is}\:\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com