Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 35195 by ajfour last updated on 16/May/18

Commented by ajfour last updated on 16/May/18

Q.35178 carried forward..

$${Q}.\mathrm{35178}\:{carried}\:{forward}.. \\ $$

Answered by ajfour last updated on 18/May/18

lets take the common diameter  as our y axis. L and T on x axis.  further let AP=l ,  ∠ALT = θ  α=((∠A)/2)  A(lcos θ, r+lsin θ) is on circum-  circle, so  l^2 cos^2 θ+(r+lsin θ−R)^2 =R^2   ..(i)  MR=OP cos (θ+α−(π/2))  ⇒ lcos α−(b/2)=(R−r)sin (θ+α)                                               ....(ii)  NS=OP cos ((π/2)−(θ−α))  ⇒  lcos α−(c/2)=(R−r)sin (θ−α)                                          .....(iii)  ⇒ 4(R−r)cos θsin α= c−b   ...(a)  and  (R−r)^2 (1+3sin^2 θ)cos^2 α−        (R−r)(b+c)sin θcos α+            (((b+c)/4))^2 −R^2 cos^2 α = 0    ....(b)  where R=(a/(2sin 2α))=(b/(2sin 2β))=(c/(2sin 2γ))     α=((∠A)/2) , β=((∠B)/2) , γ=((∠C)/2) .  sin θ, cos θ  need be eliminated amongst  the equations (a),and (b)!

$${lets}\:{take}\:{the}\:{common}\:{diameter} \\ $$$${as}\:{our}\:{y}\:{axis}.\:{L}\:{and}\:{T}\:{on}\:{x}\:{axis}. \\ $$$${further}\:{let}\:{AP}={l}\:,\:\:\angle{ALT}\:=\:\theta \\ $$$$\alpha=\frac{\angle{A}}{\mathrm{2}} \\ $$$${A}\left({l}\mathrm{cos}\:\theta,\:{r}+{l}\mathrm{sin}\:\theta\right)\:{is}\:{on}\:{circum}- \\ $$$${circle},\:{so} \\ $$$${l}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta+\left({r}+{l}\mathrm{sin}\:\theta−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:..\left(\boldsymbol{{i}}\right) \\ $$$${MR}={OP}\:\mathrm{cos}\:\left(\theta+\alpha−\frac{\pi}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:{l}\mathrm{cos}\:\alpha−\frac{{b}}{\mathrm{2}}=\left({R}−{r}\right)\mathrm{sin}\:\left(\theta+\alpha\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left(\boldsymbol{{ii}}\right) \\ $$$${NS}={OP}\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\left(\theta−\alpha\right)\right) \\ $$$$\Rightarrow\:\:{l}\mathrm{cos}\:\alpha−\frac{{c}}{\mathrm{2}}=\left({R}−{r}\right)\mathrm{sin}\:\left(\theta−\alpha\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\left(\boldsymbol{{iii}}\right) \\ $$$$\Rightarrow\:\mathrm{4}\left({R}−{r}\right)\mathrm{cos}\:\theta\mathrm{sin}\:\alpha=\:{c}−{b}\:\:\:...\left({a}\right) \\ $$$${and} \\ $$$$\left({R}−{r}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3sin}\:^{\mathrm{2}} \theta\right)\mathrm{cos}\:^{\mathrm{2}} \alpha− \\ $$$$\:\:\:\:\:\:\left({R}−{r}\right)\left({b}+{c}\right)\mathrm{sin}\:\theta\mathrm{cos}\:\alpha+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\frac{{b}+{c}}{\mathrm{4}}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \alpha\:=\:\mathrm{0}\:\:\:\:....\left({b}\right) \\ $$$${where}\:{R}=\frac{{a}}{\mathrm{2sin}\:\mathrm{2}\alpha}=\frac{{b}}{\mathrm{2sin}\:\mathrm{2}\beta}=\frac{{c}}{\mathrm{2sin}\:\mathrm{2}\gamma} \\ $$$$\:\:\:\alpha=\frac{\angle{A}}{\mathrm{2}}\:,\:\beta=\frac{\angle{B}}{\mathrm{2}}\:,\:\gamma=\frac{\angle{C}}{\mathrm{2}}\:. \\ $$$$\mathrm{sin}\:\theta,\:\mathrm{cos}\:\theta\:\:{need}\:{be}\:{eliminated}\:{amongst} \\ $$$${the}\:{equations}\:\left({a}\right),{and}\:\left({b}\right)! \\ $$

Commented by MJS last updated on 21/May/18

...this is possible I think...

$$...\mathrm{this}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{I}\:\mathrm{think}... \\ $$

Commented by ajfour last updated on 21/May/18

thanks.Please solve Q.35646

$${thanks}.{Please}\:{solve}\:{Q}.\mathrm{35646} \\ $$

Commented by MJS last updated on 22/May/18

Thanks for your work, Sir Aifour, I′m glad  to add my part:  (a)  ⇒ cos θ=((c−b)/(4(R−r)sin α)); sin θ=(√(1−cos^2  θ))  (b)  ⇒ r^4 +Br^3 +Cr^2 +Dr+E=0  but with the 1^(st)  step to solve this it leads to  r=s−(B/4)  s^4 +Ps^2 +Q=0  s_1 =−(√(−(P/2)−((√(P^2 −4Q))/2)))  s_2 =−(√(−(P/2)+((√(P^2 −4Q))/2)))  s_3 =(√(−(P/2)−((√(P^2 −4Q))/2)))  s_4 =(√(−(P/2)+((√(P^2 −4Q))/2)))  r_i =s_i −(B/4)  R=((abc)/δ); sin (α/2)=(√((1−cos α)/2)); cos (α/2)=(√((1+cos α)/2));  cos α=((−a^2 +b^2 +c^2 )/(2bc)); δ=(√((a+b+c)(a+b−c)(a−b+c)(−a+b+c)))  B=−((4abc)/δ)=−4R  P=((bc(a^4 −a^2 (b^2 +6bc+c^2 )+δ^2 ))/(4δ^2 ))  Q=((a^2 b^3 c^3 (b−c)^2 (a+b+c)(−a+b+c))/(4δ^2 ))  ((√(P^2 −4Q))/2)=((bc(b+c)^2 )/(8(a+b+c)(−a+b+c)))  (√(−(P/2)−((√(P^2 −4Q))/2)))=(((b−c)(√(bc)))/(2(√((a+b−c)(a−b+c)))))  (√(−(P/2)+((√(P^2 −4Q))/2)))=((abc)/δ)=R  r_1 =R−(((b−c)(√(bc)))/(2(√((a+b−c)(a−b+c)))))  r_2 =R−R=0  r_3 =R+(((b−c)(√(bc)))/(2(√((a+b−c)(a−b+c)))))  r_4 =R+R=2R    r_1  and r_3  are the same if we interchange  b and c. Could the lower value be the radius  of the circle touching the circumcircle inside  and the higher value be the radius of the  circle touching it from outside?  r_2 =0 is the radius of the circle identical  with the point A of the triangle.  But what about r_4 =2R?  Please try to construct all of them for a  given triangle, using my formulas. I′m  afraid I don′t have the time to do it myself,  and let me know if we made any mistake...    ...it′s wrong for an equilateral triangle...  ...it′s wrong for b=c...

$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{work},\:\mathrm{Sir}\:\mathrm{Aifour},\:\mathrm{I}'\mathrm{m}\:\mathrm{glad} \\ $$$$\mathrm{to}\:\mathrm{add}\:\mathrm{my}\:\mathrm{part}: \\ $$$$\left({a}\right) \\ $$$$\Rightarrow\:\mathrm{cos}\:\theta=\frac{{c}−{b}}{\mathrm{4}\left({R}−{r}\right)\mathrm{sin}\:\alpha};\:\mathrm{sin}\:\theta=\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$$\left({b}\right) \\ $$$$\Rightarrow\:{r}^{\mathrm{4}} +\mathcal{B}{r}^{\mathrm{3}} +\mathcal{C}{r}^{\mathrm{2}} +\mathcal{D}{r}+\mathcal{E}=\mathrm{0} \\ $$$$\mathrm{but}\:\mathrm{with}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{step}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{it}\:\mathrm{leads}\:\mathrm{to} \\ $$$${r}={s}−\frac{\mathcal{B}}{\mathrm{4}} \\ $$$${s}^{\mathrm{4}} +\mathcal{P}{s}^{\mathrm{2}} +\mathcal{Q}=\mathrm{0} \\ $$$${s}_{\mathrm{1}} =−\sqrt{−\frac{\mathcal{P}}{\mathrm{2}}−\frac{\sqrt{\mathcal{P}^{\mathrm{2}} −\mathrm{4}\mathcal{Q}}}{\mathrm{2}}} \\ $$$${s}_{\mathrm{2}} =−\sqrt{−\frac{\mathcal{P}}{\mathrm{2}}+\frac{\sqrt{\mathcal{P}^{\mathrm{2}} −\mathrm{4}\mathcal{Q}}}{\mathrm{2}}} \\ $$$${s}_{\mathrm{3}} =\sqrt{−\frac{\mathcal{P}}{\mathrm{2}}−\frac{\sqrt{\mathcal{P}^{\mathrm{2}} −\mathrm{4}\mathcal{Q}}}{\mathrm{2}}} \\ $$$${s}_{\mathrm{4}} =\sqrt{−\frac{\mathcal{P}}{\mathrm{2}}+\frac{\sqrt{\mathcal{P}^{\mathrm{2}} −\mathrm{4}\mathcal{Q}}}{\mathrm{2}}} \\ $$$${r}_{{i}} ={s}_{{i}} −\frac{\mathcal{B}}{\mathrm{4}} \\ $$$${R}=\frac{{abc}}{\delta};\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}=\sqrt{\frac{\mathrm{1}−\mathrm{cos}\:\alpha}{\mathrm{2}}};\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}=\sqrt{\frac{\mathrm{1}+\mathrm{cos}\:\alpha}{\mathrm{2}}}; \\ $$$$\mathrm{cos}\:\alpha=\frac{−{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}{bc}};\:\delta=\sqrt{\left({a}+{b}+{c}\right)\left({a}+{b}−{c}\right)\left({a}−{b}+{c}\right)\left(−{a}+{b}+{c}\right)} \\ $$$$\mathcal{B}=−\frac{\mathrm{4}{abc}}{\delta}=−\mathrm{4}{R} \\ $$$$\mathcal{P}=\frac{{bc}\left({a}^{\mathrm{4}} −{a}^{\mathrm{2}} \left({b}^{\mathrm{2}} +\mathrm{6}{bc}+{c}^{\mathrm{2}} \right)+\delta^{\mathrm{2}} \right)}{\mathrm{4}\delta^{\mathrm{2}} } \\ $$$$\mathcal{Q}=\frac{{a}^{\mathrm{2}} {b}^{\mathrm{3}} {c}^{\mathrm{3}} \left({b}−{c}\right)^{\mathrm{2}} \left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)}{\mathrm{4}\delta^{\mathrm{2}} } \\ $$$$\frac{\sqrt{\mathcal{P}^{\mathrm{2}} −\mathrm{4}\mathcal{Q}}}{\mathrm{2}}=\frac{{bc}\left({b}+{c}\right)^{\mathrm{2}} }{\mathrm{8}\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)} \\ $$$$\sqrt{−\frac{\mathcal{P}}{\mathrm{2}}−\frac{\sqrt{\mathcal{P}^{\mathrm{2}} −\mathrm{4}\mathcal{Q}}}{\mathrm{2}}}=\frac{\left({b}−{c}\right)\sqrt{{bc}}}{\mathrm{2}\sqrt{\left({a}+{b}−{c}\right)\left({a}−{b}+{c}\right)}} \\ $$$$\sqrt{−\frac{\mathcal{P}}{\mathrm{2}}+\frac{\sqrt{\mathcal{P}^{\mathrm{2}} −\mathrm{4}\mathcal{Q}}}{\mathrm{2}}}=\frac{{abc}}{\delta}={R} \\ $$$${r}_{\mathrm{1}} ={R}−\frac{\left({b}−{c}\right)\sqrt{{bc}}}{\mathrm{2}\sqrt{\left({a}+{b}−{c}\right)\left({a}−{b}+{c}\right)}} \\ $$$${r}_{\mathrm{2}} ={R}−{R}=\mathrm{0} \\ $$$${r}_{\mathrm{3}} ={R}+\frac{\left({b}−{c}\right)\sqrt{{bc}}}{\mathrm{2}\sqrt{\left({a}+{b}−{c}\right)\left({a}−{b}+{c}\right)}} \\ $$$${r}_{\mathrm{4}} ={R}+{R}=\mathrm{2}{R} \\ $$$$ \\ $$$${r}_{\mathrm{1}} \:\mathrm{and}\:{r}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{same}\:\mathrm{if}\:\mathrm{we}\:\mathrm{interchange} \\ $$$${b}\:\mathrm{and}\:{c}.\:\mathrm{Could}\:\mathrm{the}\:\mathrm{lower}\:\mathrm{value}\:\mathrm{be}\:\mathrm{the}\:\mathrm{radius} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{touching}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{inside} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{higher}\:\mathrm{value}\:\mathrm{be}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mathrm{touching}\:\mathrm{it}\:\mathrm{from}\:\mathrm{outside}? \\ $$$${r}_{\mathrm{2}} =\mathrm{0}\:\mathrm{is}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{identical} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{point}\:{A}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}. \\ $$$$\mathrm{But}\:\mathrm{what}\:\mathrm{about}\:{r}_{\mathrm{4}} =\mathrm{2}{R}? \\ $$$$\mathrm{Please}\:\mathrm{try}\:\mathrm{to}\:\mathrm{construct}\:\mathrm{all}\:\mathrm{of}\:\mathrm{them}\:\mathrm{for}\:\mathrm{a} \\ $$$$\mathrm{given}\:\mathrm{triangle},\:\mathrm{using}\:\mathrm{my}\:\mathrm{formulas}.\:\mathrm{I}'\mathrm{m} \\ $$$$\mathrm{afraid}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{the}\:\mathrm{time}\:\mathrm{to}\:\mathrm{do}\:\mathrm{it}\:\mathrm{myself}, \\ $$$$\mathrm{and}\:\mathrm{let}\:\mathrm{me}\:\mathrm{know}\:\mathrm{if}\:\mathrm{we}\:\mathrm{made}\:\mathrm{any}\:\mathrm{mistake}... \\ $$$$ \\ $$$$...\mathrm{it}'\mathrm{s}\:\mathrm{wrong}\:\mathrm{for}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}... \\ $$$$...\mathrm{it}'\mathrm{s}\:\mathrm{wrong}\:\mathrm{for}\:{b}={c}... \\ $$

Commented by ajfour last updated on 22/May/18

Thanks for the effort, let me  comprehend it all, surely its  gonna take a while !

$${Thanks}\:{for}\:{the}\:{effort},\:{let}\:{me} \\ $$$${comprehend}\:{it}\:{all},\:{surely}\:{its} \\ $$$${gonna}\:{take}\:{a}\:{while}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com