Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35217 by abdo.msup.com last updated on 16/May/18

calculate ∫_0 ^∞   ((x sin(2x))/(x^2  +4))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$

Commented by prof Abdo imad last updated on 20/May/18

let put I = ∫_0 ^∞     ((x sin(2x))/(x^2  +4))dx  2I = ∫_(−∞) ^(+∞)     ((x sin(2x))/(x^2  +4))dx= Im( ∫_(−∞) ^(+∞)   ((xe^(i2x) )/(x^2  +4)))dx  let consider the compolex finction  ϕ(z) =  ((z e^(i2z) )/(z^2  +4))  ϕ(z) = ((z e^(i2z) )/((z −2i)(z+2i))) so the poles of ϕ are  2i and −2i  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ Res(ϕ,2i)  Res(ϕ,2i) =lim_(z→2i) (z−2i)ϕ(z)  = (((2i) e^(2i(2i)) )/(4i)) = (1/2) e^(−4)  ⇒  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ (e^(−4) /2) = i π e^(−4 )   ⇒  2 I = π e^(−4)   ⇒  I  = (π/2) e^(−4)   ★ I = (π/2) e^(−4)  ★

$${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}\:{sin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$$$\mathrm{2}{I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{x}\:{sin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx}=\:{Im}\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{xe}^{{i}\mathrm{2}{x}} }{{x}^{\mathrm{2}} \:+\mathrm{4}}\right){dx} \\ $$$${let}\:{consider}\:{the}\:{compolex}\:{finction} \\ $$$$\varphi\left({z}\right)\:=\:\:\frac{{z}\:{e}^{{i}\mathrm{2}{z}} }{{z}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{z}\:{e}^{{i}\mathrm{2}{z}} }{\left({z}\:−\mathrm{2}{i}\right)\left({z}+\mathrm{2}{i}\right)}\:{so}\:{the}\:{poles}\:{of}\:\varphi\:{are} \\ $$$$\mathrm{2}{i}\:{and}\:−\mathrm{2}{i} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\mathrm{2}{i}\right) \\ $$$${Res}\left(\varphi,\mathrm{2}{i}\right)\:={lim}_{{z}\rightarrow\mathrm{2}{i}} \left({z}−\mathrm{2}{i}\right)\varphi\left({z}\right) \\ $$$$=\:\frac{\left(\mathrm{2}{i}\right)\:{e}^{\mathrm{2}{i}\left(\mathrm{2}{i}\right)} }{\mathrm{4}{i}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{−\mathrm{4}} \:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{−\mathrm{4}} }{\mathrm{2}}\:=\:{i}\:\pi\:{e}^{−\mathrm{4}\:} \:\:\Rightarrow \\ $$$$\mathrm{2}\:{I}\:=\:\pi\:{e}^{−\mathrm{4}} \:\:\Rightarrow\:\:{I}\:\:=\:\frac{\pi}{\mathrm{2}}\:{e}^{−\mathrm{4}} \\ $$$$\bigstar\:{I}\:=\:\frac{\pi}{\mathrm{2}}\:{e}^{−\mathrm{4}} \:\bigstar \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com