Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 35220 by abdo.msup.com last updated on 16/May/18

let z from C and f(z)= ((2z)/((z−1)(2z +1)))  developp f at integr serie.

$${let}\:{z}\:{from}\:{C}\:{and}\:{f}\left({z}\right)=\:\frac{\mathrm{2}{z}}{\left({z}−\mathrm{1}\right)\left(\mathrm{2}{z}\:+\mathrm{1}\right)} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Commented by abdo mathsup 649 cc last updated on 18/May/18

let decompose f(z)=   f(z)= (a/(z−1)) + (b/(2z+1))  a =lim_(z→1) (z−1)f(z) = (2/3)  b =lim_(z→−(1/2))    (2z+1)f(z)= ((−1)/(−(3/2))) =(2/3)  f(z)= (2/3){ (1/(z−1))  +(1/(2z+1))}  =−(2/3) (1/(1−z))  + (2/3) (1/(1+2z)) so for ∣z∣<(1/2)  f(z) =−(2/3) Σ_(n=0) ^∞  z^n    +(2/3) Σ_(n=0) ^∞   (−1)^n 2^n  z^n   =(2/3) Σ_(n=0) ^∞   {(−1)^n  2^n  −1}z^n   .the radius of  convergence is R=(1/2) .

$${let}\:{decompose}\:{f}\left({z}\right)=\: \\ $$$${f}\left({z}\right)=\:\frac{{a}}{{z}−\mathrm{1}}\:+\:\frac{{b}}{\mathrm{2}{z}+\mathrm{1}} \\ $$$${a}\:={lim}_{{z}\rightarrow\mathrm{1}} \left({z}−\mathrm{1}\right){f}\left({z}\right)\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${b}\:={lim}_{{z}\rightarrow−\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:\left(\mathrm{2}{z}+\mathrm{1}\right){f}\left({z}\right)=\:\frac{−\mathrm{1}}{−\frac{\mathrm{3}}{\mathrm{2}}}\:=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${f}\left({z}\right)=\:\frac{\mathrm{2}}{\mathrm{3}}\left\{\:\frac{\mathrm{1}}{{z}−\mathrm{1}}\:\:+\frac{\mathrm{1}}{\mathrm{2}{z}+\mathrm{1}}\right\} \\ $$$$=−\frac{\mathrm{2}}{\mathrm{3}}\:\frac{\mathrm{1}}{\mathrm{1}−{z}}\:\:+\:\frac{\mathrm{2}}{\mathrm{3}}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}{z}}\:{so}\:{for}\:\mid{z}\mid<\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${f}\left({z}\right)\:=−\frac{\mathrm{2}}{\mathrm{3}}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{z}^{{n}} \:\:\:+\frac{\mathrm{2}}{\mathrm{3}}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}} \mathrm{2}^{{n}} \:{z}^{{n}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left\{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}} \:\mathrm{2}^{\boldsymbol{{n}}} \:−\mathrm{1}\right\}\boldsymbol{{z}}^{\boldsymbol{{n}}} \:\:.\boldsymbol{{the}}\:\boldsymbol{{radius}}\:\boldsymbol{{of}} \\ $$$$\boldsymbol{{convergence}}\:\boldsymbol{{is}}\:\boldsymbol{{R}}=\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com