Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35228 by abdo mathsup 649 cc last updated on 16/May/18

find the value of integral  ∫_0 ^∞   e^(−px)    ((sin(qx))/(√x))dx  with p>0 and q>0

$${find}\:{the}\:{value}\:{of}\:{integral} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{px}} \:\:\:\frac{{sin}\left({qx}\right)}{\sqrt{{x}}}{dx}\:\:{with}\:{p}>\mathrm{0}\:{and}\:{q}>\mathrm{0} \\ $$

Commented byabdo mathsup 649 cc last updated on 18/May/18

let put I =∫_0 ^∞    e^(−px)   ((sin(qx))/(√x))dx  chanbgement  (√x) =t give  I  = ∫_0 ^∞   e^(−pt^2 )      ((sin(qt^2 ))/t) 2t dt  I =2 ∫_0 ^∞     e^(−pt^2 )  sin(qt^2 )dt  = ∫_(−∞) ^(+∞)    e^(−pt^2 ) sin(qt^2 )dt = Im( ∫_(−∞) ^(+∞)   e^(−pt^2  +iqt^2 ) dt)  but  ∫_(−∞) ^(+∞)    e^(−pt^2  +iqt^2 ) dt= ∫_(−∞) ^(+∞)   e^(−(p−iq)t^2 ) dt  =_((√(p−iq))t= u)    ∫_(−∞) ^(+∞)    e^(−u^2 )    (du/(√(p−iq)))  = ((√π)/(√(p−iq)))  I  = ((√π)/(√(p−iq)))

$${let}\:{put}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−{px}} \:\:\frac{{sin}\left({qx}\right)}{\sqrt{{x}}}{dx}\:\:{chanbgement} \\ $$ $$\sqrt{{x}}\:={t}\:{give} \\ $$ $${I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{pt}^{\mathrm{2}} } \:\:\:\:\:\frac{{sin}\left({qt}^{\mathrm{2}} \right)}{{t}}\:\mathrm{2}{t}\:{dt} \\ $$ $${I}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{e}^{−{pt}^{\mathrm{2}} } \:{sin}\left({qt}^{\mathrm{2}} \right){dt} \\ $$ $$=\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{−{pt}^{\mathrm{2}} } {sin}\left({qt}^{\mathrm{2}} \right){dt}\:=\:{Im}\left(\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{pt}^{\mathrm{2}} \:+{iqt}^{\mathrm{2}} } {dt}\right) \\ $$ $${but}\:\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{−{pt}^{\mathrm{2}} \:+{iqt}^{\mathrm{2}} } {dt}=\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({p}−{iq}\right){t}^{\mathrm{2}} } {dt} \\ $$ $$=_{\sqrt{{p}−{iq}}{t}=\:{u}} \:\:\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{−{u}^{\mathrm{2}} } \:\:\:\frac{{du}}{\sqrt{{p}−{iq}}} \\ $$ $$=\:\frac{\sqrt{\pi}}{\sqrt{{p}−{iq}}} \\ $$ $${I}\:\:=\:\frac{\sqrt{\pi}}{\sqrt{{p}−{iq}}} \\ $$ $$ \\ $$

Commented byabdo mathsup 649 cc last updated on 18/May/18

I =Im(  ((√π)/(√(p−iq))))  but  p−iq =(√(p^2  +q^2 ))((p/(√(p^2  +q^2 ))) −i(q/(√(p^2  +q^2 ))))=r e^(iθ)  ⇒  r=(√(p^2 +q^2 ))   and   tanθ=−(q/p) ⇒θ=−arctan((q/p))  (√(p−iq)) = (√r)  e^(i(θ/2)) = (p^2  +q^2 )^(1/4)   e^(−(i/2)arctan((q/p)))   I =Im( (√π)  (p^2 +q^2 )^(−(1/4))  e^((i/2)arctan((q/p))) )  I = (√π)  (p^2  +q^2 )^(−(1/4))   sin((1/2)arctan((q/p)))

$${I}\:={Im}\left(\:\:\frac{\sqrt{\pi}}{\sqrt{{p}−{iq}}}\right)\:\:{but} \\ $$ $${p}−{iq}\:=\sqrt{{p}^{\mathrm{2}} \:+{q}^{\mathrm{2}} }\left(\frac{{p}}{\sqrt{{p}^{\mathrm{2}} \:+{q}^{\mathrm{2}} }}\:−{i}\frac{{q}}{\sqrt{{p}^{\mathrm{2}} \:+{q}^{\mathrm{2}} }}\right)={r}\:{e}^{{i}\theta} \:\Rightarrow \\ $$ $${r}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\:\:\:{and}\:\:\:{tan}\theta=−\frac{{q}}{{p}}\:\Rightarrow\theta=−{arctan}\left(\frac{{q}}{{p}}\right) \\ $$ $$\sqrt{{p}−{iq}}\:=\:\sqrt{{r}}\:\:{e}^{{i}\frac{\theta}{\mathrm{2}}} =\:\left({p}^{\mathrm{2}} \:+{q}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:\:{e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\frac{{q}}{{p}}\right)} \\ $$ $${I}\:={Im}\left(\:\sqrt{\pi}\:\:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}}{\mathrm{2}}{arctan}\left(\frac{{q}}{{p}}\right)} \right) \\ $$ $${I}\:=\:\sqrt{\pi}\:\:\left({p}^{\mathrm{2}} \:+{q}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\:{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{{q}}{{p}}\right)\right) \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com